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This article explores the environmental and market determinants of irrigation
management in a five-state Great Lakes region. We found evidence that corn,
soybean, and potato irrigators respond to the cost of water at the intensive
margin. Evidence of a water-cost effect at the extensive margin was mixed. This
article is unique in its geographic focus and its consideration of various
temperature effects. We found evidence of a long-run average temperature effect
on crop acreage allocation decisions and a short-run extreme heat effect on
water application rates.
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Introduction

A significant body of research explores the effects of climate change on agricultural
yields. Deschénes and Greenstone (2007) found that climate change is likely to
have a net positive effect on agricultural output and profit. In a conflicting
result, Schlenker and Roberts (2009) found that yields are likely to diminish
significantly before the end of the century due to the damaging effects of heat
and water stress on rental rates for non-irrigated land. Hendricks (2018)
predicts significant losses: 33 percent by mid-century under Intergovernmental
Panel on Climate Change (IPCC) greenhouse gas Representative Concentration
Pathway (RCP) 4.5. Broadly, the literature has established important nonlinear
effects of climate and weather conditions on agriculture in the United States (U.
S.). Despite the apparent relationships between heat stress, precipitation, and
irrigation water use, the consideration of these effects exists only to a limited
degree in the irrigation water demand literature.
The approach typically taken in the irrigation demand literature includes

estimation of straightforward linear temperature and precipitation effects,
which fails to capture any important nonlinearities similar to those captured
in the adjacent literature on agricultural yield. Olen, Wu, and Langpap (2016)
moved beyond typical irrigation demand studies by including an indicator for
counties that are historically drought prone in their model of irrigation
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application rates. The literature has otherwise not addressed the effect of
extreme heat or precipitation variability on water application rates. This
study introduces measures of extreme heat. This study also introduces
concerns about irrigation water demand and water availability in the Great
Lakes Region of the U.S.
Aquifers in the Great Lakes Region tend to be shallow and connected to

surface water resources, leading to sensitivity of surface water systems to
groundwater withdrawals (Wallander 2017). Importantly, Mubako, Ruddell,
and Mayer (2013, p. 678) found that in the Kalamazoo River watershed in
Southwest Michigan “most instream water scarcity is caused by localized
consumptive uses of water in late summer months at small spatial scales.”
These intense localized withdrawals caused scarcity impacts that
reverberated through downstream segments, including the main river stem.
The Mubako study noted further that irrigation withdrawals are particularly
important drivers of scarcity because they are most heavily concentrated
during summer months, coinciding with seasonal lows in in-stream water
flow. Further, unlike other consumptive withdrawals, irrigation withdrawals
are often located in small-scale upland agricultural watersheds that are
vulnerable to seasonal change. A number of studies (Luukkonen et al. 2004;
Zorn, Seelbach, and Rutherford 2012; Mubako, Ruddell, and Mayer 2013;
Watson, Mayer, and Reeves 2014) have similarly concluded that adaptive
management of water scarcity in water-rich regions like the Great Lakes
Region must address the sensitivity of aquatic ecosystems within localized
scales of space and time.
The Great Lakes – St. Lawrence River Basin Water Resources Compact (Great

Lakes Compact), ratified in 2008, requires basin states to protect aquatic
ecosystems from adverse effects of large-quantity (100,000 gallons per day
or more) groundwater and surface water withdrawals. To meet this
obligation, states have implemented programs that limit the water available
for irrigators and other large-quantity users, a novel approach for these
riparian doctrine states. In some areas, these programs introduce binding
constraints on water withdrawals and introduce competition for irrigation
water resources where neither was experienced previously. Understanding
the determinants of irrigation water use is particularly important in the
context of these developing institutions. An improved understanding of the
conditions that drive irrigation decisions will enable resource managers to
anticipate water-use conflicts and may serve as a guide for estimating the
marginal value product of increasingly scarce irrigation water in the Great
Lakes Region.
This article reports estimates of the water-use response of irrigators in

water abundant regions to various climatological, environmental, and price
conditions. The study was conducted using secondary data sources, including
the Farm and Ranch Irrigation Survey and public weather and climatological
data sources. The research focused on the response of irrigators across water
application and irrigated acreage decisions. The intensive margin estimation
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addresses the annual irrigation water application rate per acre. The extensive
margin estimation explores allocation of irrigated acreage among crop types.
The combined results of the crop acreage and water application models can
be evaluated to produce generalized expectations of long-run changes in
water use.

Irrigation Water Demand

The majority of the existing literature on irrigation demand in the U.S. is
confined to water-scarce western states. A national-scale meta-analysis of
irrigation demand, including studies dating from 1963 to 2004, did not
include a single study east of the Mississippi; over a third of the studies used
data from California irrigators (Scheierling, Loomis, and Young 2006). In
recent years, the focus on irrigation in the western U.S. has continued.
Notable studies evaluated the effect of energy prices on agricultural
groundwater extraction from the high plains aquifer and the effects of water
scarcity and climate conditions on irrigation decisions in the western U.S.
(Olen, Wu, and Langpap 2016; Hendricks and Peterson, 2012; Pfeiffer and
Lin 2014).
A small number of irrigation demand studies have evaluated irrigation

management decisions in the relatively water abundant eastern regions of
the U.S. This geographical imbalance is likely due to a number of factors:
water scarcity and heightened water concern in western states, limitations in
data availability, and a general assumption that the low cost of water in
eastern states would lead to a near zero price elasticity for irrigation water.
Alternatively, the availability of irrigation substitutes (i.e., precipitation) might
provide additional flexibility in water application decisions and thus increase
the expected price elasticity for irrigation water in eastern states.
With evidence from Georgia, Gonzalez-Alvarez, Keeler, and Mullen (2006)

concluded that even outside of the water scarce west, the cost of irrigation
water is an important factor in farm irrigation decisions. Gonzalez-Alvarez,
Keeler, and Mullen noted that a number of management choices might be
influenced by the cost of irrigation water: “Irrigation efficiency can be
improved, crops can be irrigated less, and farmers can pay closer attention to
soil moisture and irrigation timing” (Gonzalez-Alvarez, Keeler, and Mullen
2006, p. 311). Another of the few irrigation management studies considering
firms east of the Mississippi found that irrigation water demand is “modestly
affected by water price (with elasticities between -0.01 and -0.17) but more
so by crop price (with elasticities between 0.5 and 0.82)” (Mullen, Yu, and
Hoogenboom 2009, 1421). These studies used pump and well characteristics
to generate a proxy measure of the marginal cost of irrigation.
In contrast to agricultural inputs purchased in competitive markets,

measuring an own-price elasticity for irrigation water demand in areas like
the southeastern U.S. and the Great Lakes Region is uniquely challenging.
Crop irrigators often receive irrigation water from unpriced sources, most
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often on-site groundwater wells and occasionally nearby surface water. Efforts
to circumvent the lack of an explicit unit price through the use of imputed
irrigation costs suffer from bias due to unobserved variables (Mieno and
Brozović 2016). These issues can be avoided when data on direct irrigation
expenditures are available.

Theoretical Model

This analysis focuses on firm irrigation management decisions across a decision
framework that includes allocation of irrigated land among crop choices and
water application decisions. The firm’s maximization problem is rooted in a
simple total profit function for a multi-output irrigating firm (equation 1).

Π(p, b, N, x)(1)

Where p is a vector of crop prices, b is the cost of irrigation water, N is the land
constraint, and x is a vector of other exogenous environmental variables
(climate, weather, soil quality).
To develop a theoretical framework for the crop allocation decision, the total

profit function is decomposed into a set of individual irrigated crop profit
functions, where i indicates a particular crop:

πi( pi, b, n
�
i , x)(2)

The optimization can be restated as a choice of irrigated acreage allocation for
the individual crops, constrained by the total acreage under irrigation N�

irr .

Π(p, b, N, x) ¼ max
n1...nm

Xm
i¼1

πi( pi, b, n
�
i , x) :

Xm
i¼1

ni ¼ N
�
irr

( )
(3)

The estimable forms for the crop allocation and water application decisions are
derived from the crop level model of a multi-output irrigating firm. At the
intensive margin, the specific management behavior of interest is the volume
of water applied to a particular crop—corn, soybeans, or potatoes—given
that a firm is growing the crop on a field with irrigation infrastructure in place.

Empirical Model

Assuming a normalized quadratic profit function, the estimable empirical
functions are linear in the exogenous variables (Lau 1978; Moore and Negri
1992; Moore, Gollehon, and Carey 1994). The equation for n�i , acreage
allocation for crop i, is presented as a function of crop prices, water cost,
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total cropland, and environmental conditions with effects varying by crop.

n
�
i ¼ ai þ

Xm
j¼1

βij pj þ δibþ τiN þ
Xt

s¼1

ηisxs i ¼ 1, . . . , m(4)

This function is intended to capture the indirect water use response observed
as the change in the allocation of irrigated land among the m crops, each of
which has unique water requirements and favors certain environmental
conditions. In the crop acreage models, the environmental and price
variables, x and p, include weather and price conditions lagged one year with
additional controls for long-run climate conditions. The variables were
chosen to reflect the information available to the firm in the winter of the
survey year when planting decisions are made.
Application of Hotelling’s lemma to the individual crop profit function

produces the estimable intensive margin water demand function.

� δπi( pi, b, n
�
i , x)

δb
¼ wi( pi, b, n

�
i , x) i ¼ 1, . . . , m(5)

wi ¼ αi þ βipi þ δibþ τiN þ
Xt

s¼1

ηis xs i ¼ 1, . . . , m(6)

The general forms for the two estimations are similar, although cross prices do
not appear in the empirical function for w. The price and environmental
variables that appear in the water application models are selected to reflect
the relevant information and conditions available to the firm during the
irrigation season. The exclusion of cross prices from the water application
model reflects an assumption that water application decisions are made
independently for each crop.

Data and Hypotheses

Individual response data from the USDA Farm and Ranch Irrigation Survey
(FRIS) comprise the foundational data set for this analysis. FRIS contains firm
level responses on water application rates, irrigated acreage, irrigation
pumping expenditures, and other irrigation management topics. Precipitation
and temperature data were obtained from the PRISM Climate Group. Solar
radiation, humidity, and wind speed data were obtained from the Department
of Energy’s National Solar Radiation Database, Physical Solar Model 3.0. Soil
quality data was derived from the NRCS STATSGO database. Finally, state
level crop price data was obtained using USDA Quick Stats. Due to limitations
of the survey data used for this study, each firm is geographically identified
at the county level. The climate and soil data characteristics were aggregated
and linked to the FRIS response data at the county level.
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FRIS

FRIS is a supplement to the Census of Agriculture (COA), a general farm
management survey conducted on five-year cycles. The FRIS is collected in
the years following the COA from a sample frame of firms that reported
having participated in irrigation in the latest COA. The sample used in this
article includes major irrigating states in the Great Lakes Region – Illinois,
Indiana, Michigan, Minnesota, and Wisconsin, and it includes three survey
years – 2003, 2008, and 2013.
In 2013, the national FRIS sample targeted 35,000 farms and obtained

responses from 34,966. The targeted farms were selected via a stratification
strategy. The major irrigators in each state were assigned to a certainty
stratum (i.e., probability¼ 1). The remaining noncertainty strata (probability
< 1) were sampled systematically by acreage. The boundaries of each strata
were uniquely defined by state to reflect the distribution of farm size in each
state measured as total acres irrigated. Of the survey responses, 2,095
responding farms were from the certainty stratum and the remaining 32,871
farms were from the various noncertainty strata (USDA 2013, Appendix A-1).
This sampling strategy was also used for the 2003 and 2008 FRIS (USDA
2003, 2008, 2013, Farm and Ranch Irrigation Survey). The individual
response data includes weights that are used to correct for non-randomness
in the sample selection strategy.
The selected sample includes corn, soybean, and potato irrigators. These

crops compose the majority of the irrigated acreage in the five states.
Agricultural irrigation occurred on over 2.5 million acres across the five-state
region in 2012. Figure 2 displays these acres by the share in each crop. The
relative shares of irrigated acreage for each crop are similar across the states
in the region with the exception of Wisconsin, where vegetables contribute a
larger share. This study did not consider vegetable irrigation because the
data does not allow for distinguishing among vegetable types. Additionally,
individual vegetable types are grown by relatively few farms, and
management practices are likely to vary by type. Potato irrigation occurs on a
larger share of acreage in the northern part of the region, and potatoes are
an important crop to evaluate because they generally require greater
irrigation volume than corn or soybeans.
Figure 3 displays the spatial distribution of irrigated acres as reported in the

COA 2012. The figure highlights the presence of several key irrigation areas
within the sample region. Most notably, the largest concentrations of
irrigating farms are in Southwest Lower Michigan/Northern Indiana, Central
Wisconsin, and Central Minnesota. Table 1 contains the number of farms by
year, state, and crop as they appear in the final study sample. The 4,737
farms are relatively evenly distributed over the three sample years and five
sample states. Summing the number of firms over the three crops in a given
state and year does not sum to the reported total number of firms because
many firms irrigate more than one of the studied crops.

Agricultural and Resource Economics Review442 December 2020

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
9.

26
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2019.26


Some firms appear in multiple survey years. Approximately 10 percent of the
total number of surveyed firms appear in all three survey years, comprising 20
percent of the observations in the sample. Approximately 18 percent of unique
firms appear in two years of the survey, comprising 25 percent of the
observations.

Water Use and Acres Irrigated

The FRIS questionnaire asks firms to report water applications to each irrigated
crop as an annual per-acre value. These reported values were used directly as
the dependent variable in the water application estimation. Potatoes are the
most water intensive of the three crops, receiving an average of 9.6 inches
per acre. The difference in water intensity provides the basis for the
hypothesized effects of water cost in the crop allocation model. In response
to higher water prices, firms are expected to substitute away from potatoes
and toward corn and soybeans.
The dependent variables in the crop allocation models are the FRIS reported

values for irrigated acreage of the specific crop. The mean irrigated potato
acreage is significantly larger than the respective means for corn or soybean,
indicating a greater degree of firm concentration in potato production. The

Figure 1. Irrigated Acres of Major Irrigated Crops, by State and Year
Source: FRIS summary reports 2003, 2008, 2013
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vast majority of firms irrigated corn or both corn and soybeans in the observed
years. This distribution is consistent with typical crop rotations where firms
alternate between corn and soybeans on two- or three-year rotations.
Similarly, a majority of the potato irrigators in the sample are also irrigating
other crops. This is expected, as potatoes are also typically grown on a two-
or three-year rotation. Considering the nature of typical crop rotations, it is
likely that some, if not all, firms in the sample regularly participate in
irrigation of at least two of the studied crops. Thus, substitution effects in the
crop allocation parameters are expected to appear primarily as a decision to
participate or not participate in growing irrigated potatoes. In the short run,
potato production decisions are likely partially constrained by production

Figure 2. Irrigated acres by county in western Great Lakes states, 2012
Note: NA indicates counties where data was suppressed in published USDA COA summary tables to
protect survey respondent confidentiality.

Source: Census of Agriculture, 2012
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Table 1. Number of Farms in Study Sample, by Year, State, and Crop

STATE

IL IN MI MN WI Total

2003 All Crops 391 292 233 335 270 1,521

Corn 372 270 207 299 205 1,353

Soybean 300 206 138 226 130 1,000

Potato S* S* 39 40 91 188

2008 All Crops 335 309 288 361 228 1,521

Corn 320 289 267 326 182 1,384

Soybean 199 207 163 230 97 896

Potato S* S* 36 33 60 136

2013 All Crops 419 359 291 353 273 1,695

Corn 391 339 263 323 236 1,552

Soybean 254 225 177 204 110 970

Potato S* S* 38 23 67 144

Total All Crops 1,145 960 812 1,049 771 4,737

Corn 1,083 898 737 948 623 4,289

Soybean 753 638 478 660 337 2,866

Potato 21 20 113 96 218 468

*S indicates values that are suppressed according to USDA NASS confidentiality requirements.

Figure 3. Seasonal Variation in Water Withdrawals in Wisconsin
Source: Wisconsin Water Use Report 2013

http://dnr.wi.gov/topic/WaterUse/documents/WithdrawalReportDetail2013.pdf
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contracts, but the FRIS lacks a useable identifier for firms operating with
production contracts.

Measuring Water Cost

An explanatory variable of primary interest is the cost of irrigation water. An
increase in the cost of water is hypothesized to cause a substitution away
from water intensive crops and cause a reduction in water application rates.
There are three general approaches to measuring irrigation cost in the
irrigation demand literature when water itself is unpriced.
First, the energy price approach relies on variation in local energy prices

applied as a proxy for the marginal water cost. Mieno and Brozović (2016)
showed that “energy price elasticity is identical to the irrigation cost elasticity
of groundwater use when groundwater itself is not priced” (423). The energy
price approach is simple in construction, but it does not account for a number
of firm technology characteristics that affect the cost of water (e.g.,
groundwater depth, pumping pressure, total dynamic head). Additionally, this
method is only suitable if price varies sufficiently across the sample. In a
variation of this approach, direct energy charges may be used rather than
prices. When the data are available, this approach is ideal because it accounts
for variations in irrigation technology directly. In the context of this study, the
available measures of energy price do not provide sufficient variability to use
the energy price approach and direct energy charges are not available.
Two general alternatives to the energy price approach, the engineering and

average cost approaches, leverage the additional variation between firms
with unique water delivery infrastructure. The engineering approach requires
data on pump characteristics to impute cost parameters using engineering
relationships (Gonzalez-Alvarez, Keeler, and Mullen 2006; Moore, Gollehon,
and Carey 1994; Hendricks and Peterson 2012). Common parameters used in
the engineering approach include well depth, pump technology, pump system
pressure, etc. A number of irrigation demand studies using FRIS data have
applied the engineering approach to impute pumping costs (Moore, Gollehon,
and Carey 1994; Mullen, Yu, and Hoogenboom 2009; Hendricks and Peterson
2012). However, Mieno and Brozovic (2016) raised concern that correlations
between unobserved characteristics of a well or pump can introduce bias.
Further, depending on the direction of the correlation, the unobserved
variables might introduce amplification bias.
Olen, Wu, and Langpap (2016) used FRIS data and applied the average cost

approach, which requires individually reported irrigation expenditure data
and is distinct from the energy price and engineering approaches in that it
may capture some irrigation costs that are fixed over the relevant interval. A
profit maximizing firm with complete information would optimize water use
as a function of the marginal cost of water, but firms in the context of this
article may instead respond to average cost over the time scale of a regular
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billing cycle. This expectation applies particularly to firms that primarily use
electricity as their energy source for pumping.
Findings from Ito (2014) suggest that electricity consumers may not

effectively respond to marginal prices due to complicated signals from
nonlinear pricing. Many utility rate plans include pricing structures that
might obscure an irrigating firm’s perception of marginal cost (e.g., demand
charges, block rates). Thus, the average cost of water may be more salient
than marginal cost for irrigating firms. For irrigators in this study, diesel
expenditures composed a large portion of the total pumping expense, but
electricity was the majority source in most state-years in the sample.
For this study, firm-level average cost of irrigation water was calculated as the

total annual energy expenditures for pumping, E, divided by the total number of
acre inches applied (calculated by summing the product of irrigated acreage, n,
and water application, w, over m crops).

b ¼ EPm
i¼1 wini

(7)

The average cost of water variable, b, may approximate the marginal cost of
water when there are no significant changes in energy prices during the
irrigation season and firms do not conflate fixed and marginal costs. The
majority of irrigation activity occurs over a relatively short period of time
(see Figure 4), so large variation in within-season energy price is unlikely.
The reported average cost might be a poor proxy for the marginal cost if
irrigators were able to adjust a system’s diesel vs. electric energy mix in
response to within-season changes in energy price ratios. A subset of the
sampled firms reports expenditures on multiple types of energy, primarily
electricity and diesel. These irrigators might be potential candidates for
energy switching behavior, except the nature of irrigation pump technology
makes this behavior unlikely. Irrigation systems are relatively long-term
investments for agricultural firms in the Great Lakes Region, and the
presence of redundant pumping systems for energy switching is not a known
practice (B. Russell, personal communication, February 1, 2018).

Climate and Weather Data

Precipitation and temperature data were obtained from the PRISM Climate
Group. Daily precipitation and temperature records were available at a 4km
grid resolution. Current year and lagged year temperature and precipitation
variables were derived using daily precipitation, maximum temperature, and
minimum temperature data. Additional degree day and precipitation
variability measures were produced with modifications to the daily PRISM
values. PRISM also publishes 30-year normal climate variables calculated as
moving averages. Thirty-year average temperature and precipitation variables
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have been used in recent literature to estimate climate impacts on long-term
irrigation management decisions (Bigelow and Zhang, 2018). These variables
were included in the crop allocation models to control for gradual climate
impacts on crop substitution decisions.
The specifications for the climate variables used in this article were guided by

information from agricultural irrigation extension specialists at Michigan State
University (MSU). Specifically, MSU irrigation specialists indicated that May
1st –September 31st is a sufficiently wide growing season window during which
environmental conditions would affect irrigation decisions, with July and
August being the heaviest irrigation months (S. Miller, personal communication,
September 17, 2017). Irrigation would only occur outside the growing season
window under exceptional circumstances (e.g., to “water-in” a cover crop). The
seasonality of irrigation water demand is also apparent in Wisconsin water use
reports presented in Figure 4.
Temperature is hypothesized to have a positive effect, and precipitation

volume is hypothesized to have a negative effect on water application.
Due to the relative sensitivity of potatoes, higher temperatures are
hypothesized to cause a substitution away from potato production. With
the growing season calendar in mind, the preferred climate specification
includes variables for peak irrigation season precipitation volume and
average temperature. Peak irrigation season is defined as the months of
July and August. These variables were generated by converting the 4km
cells in the raw daily PRISM data to their central points and then taking
the mean of all points that fall within the county to generate a county
level aggregate. The daily, county-level precipitation data was summed to
generate the cumulative values over July and August. The mean of the
daily, county-level temperature data gives the average daily max
temperature over the same time period.
An additional measure was designed to account for nonlinear temperature

effects. The measure, Extreme Heat Degree Days (EHDD), is similar to a
growing degree day specification common in the crop yield literature. It was
calculated as the count of degrees in excess of an extreme heat threshold
(34°C) summed over days in the irrigation season, D. In the following
equation, ti is the maximum temperature on day i.

EHDD ¼
XD
i

max(ti, 34)� 34(8)

The 34°C threshold has been identified as the threshold at which additional heat
reduces crop yields (Deschenes and Greenstone 2007; Ritchie and NeSmith
1991). Irrigation applications are hypothesized to be increasing in EHDD
because irrigation is a potential strategy to mitigate heat stress.
Predictions of climate-related changes in precipitation in the Great Lakes

Region are subject to a greater degree of uncertainty than predictions of
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climate-related temperature changes. The existing literature indicates that
precipitation will become more variable across multiple time scales ranging
from daily, to seasonal, annual, and even decadal (Pendergrass et al. 2017;
Hatfield et al. 2014). Common precipitation measures in the existing
irrigation demand literature include seasonal and annual precipitation
volume. These broad measures do not account for the importance of
precipitation timing. Simply stated, between two locations that receive the
same total precipitation over a given time period (e.g., one month), the
location that receives that precipitation distributed most evenly throughout
the month is expected to use less irrigation water.
A number of peak irrigation season precipitation variability measures were

considered: the standard deviation of daily precipitation, a Shannon index
measure of precipitation evenness, a count measure of 10-day drought
events, and a count measure of 20-day drought events. The water price and
main precipitation coefficients did not change significantly with the inclusion
of any precipitation variability measure. None of the considered measures
produced statistically significant effects, so they were excluded from the final
models.

NRCS Soils Data

Soils data was obtained from the USDA STATSGO database. Variables for this
analysis were generated from the Soil Capability Class data layer, which
groups soils “according to their limitations for field crops, the risk of
damage if they are used for crops, and the way they respond to
management.” For this analysis, the soil capability class data was
converted to create a county level soil quality variable. Soil quality was
measured as the percentage of land that falls into either class 1 or class 2
in each county. Capability classes 1 and 2 have few to moderate
limitations for crop production. This specification is similar to the
approach used by Olen et al. (2016). The expected effect of soil quality on
water use at the intensive margin is negative, since higher quality soils
that better retain moisture would reduce the need for irrigation. At the
extensive margin, soil quality is hypothesized to have a positive effect on
acreage allocations of water intensive crops (i.e., potatoes) and a negative
effect on acreage allocations of less water-intensive crops (i.e., soybeans).
The direction of this effect may be confounded by differences in soil types
that are not captured by the capability class soil quality measure. Potato
growers are generally expected to prefer sandy soils (or other soils with
good drainage) because potatoes require careful control of soil moisture
and can be easily damaged in overly wet or overly dry soils. Given this
sensitivity, land with few impediments (as measured with the capability
class data) may be a necessary, but not sufficient, condition for a typical
firm to participate in potato production.
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Crop Prices

Price data was obtained from the state-by-state monthly crop price database
maintained by the USDA National Agricultural Statistics Service. In the water
application estimation, a variable indicating same-year, July price was used to
measure firm expectations at the time irrigation decisions are made. Lagged
marketing-year prices were included in the crop allocation model to capture
price expectations at the time planting and investment decisions are made.
Importantly, spatial variation in the state-level price data is limited, so the
estimation of price effects relies on variation between years. Corn and
soybean prices are highly correlated in the sample (ρ¼0.97), so their effects
cannot be distinguished in the crop allocation models. To address the
correlation between corn and soybean prices, a composite price was
calculated as the average of the corn and soybean prices faced by each firm.
This composite variable is used in the crop allocation model in place of
separate corn and soybean prices.

Addressing Measurement Error

The distribution of marginal energy cost for the study sample is skewed with a
number of extreme values in both tails of the distribution. The outliers with
unexpectedly large average water cost values may be attributable to errors in the
FRIS responses or data entry errors for either irrigation volume or total energy
expenditures. Measurement errors in irrigation volume, wi, would be especially
problematic because that term also appears in the denominator of the formula
for constructing the water cost variable. The water cost variable, b, calculated as
shown in equation 9, is a primary covariate of interest in both the intensive and
extensive margin estimations. Measurement error in wi would introduce
amplification bias in the estimated parameter on b, whereas measurement error
in E, total energy expenditures, would introduce attenuation bias.
To test for amplification bias, two approaches for calculating total water use

were applied. First, the reported responses for acre-inches applied by crop were
aggregated across irrigated acreage, as shown in the denominator of equation
9. Second, FRIS responses on the volume applied by water source—ground
water, on-farm surface water, or off-farm water—were aggregated. The first
approach is preferable because the crop level questions are more narrowly
focused, and their targeted nature reduces the likelihood of recollection error
and other sources of survey response error (e.g., lack of clarity in reported
units). As expected, the variance of b as calculated using this approach is
significantly smaller.
The values of b calculated using the sum of by-crop applications were

compared to the values of b calculated using the total of all water sources,
and the sample was restricted to the subset of observations that reported
consistent total water quantity values (difference between the two values
< 5 percent). If measurement error is driving amplification bias in the full
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sample, the parameter of interest estimated with the reduced sample would be
smaller in magnitude. However, when the general model was estimated with the
limited sample, the estimated parameter on b was slightly larger in magnitude.
This suggests the results are unlikely to be significantly biased by measurement
error in wi.
Energy expenditures, which are summed to produce E, may be misreported

for a variety of reasons, including but not limited to a blurred differentiation
between irrigation-related expenditures and other non-irrigation energy
expenditures. Consider two illustrative examples. First, a firm using primarily
electricity for irrigation may receive a single bill for irrigation-related and
non-irrigation-related electricity use. A second firm using primarily diesel
fuel for irrigation may buy diesel fuel in bulk for numerous uses. When asked
to report total energy expenditures by energy source, firms may fail to
accurately distinguish between these competing uses. In such cases, firms
might underreport or overreport actual irrigation expenditures.
To address the measurement error in the numerator of the equation for b,

firms above the 95th percentile and below the 5th percentile for average cost
of water, b, were removed from the sample. This change had the expected
effect; the magnitude of the estimated coefficient on b increased due to the
reduction of attenuation bias from measurement error.

Regression Weights

All regressions are reported using the USDA-provided sample weights to correct
for the non-randomness in the sampling method. The probability weights
denote the inverse of the probability that a farm in the sample frame has
been included in the sample. In a simple sense, probability weights can be
interpreted as the number of unobserved firms of a similar size that are
represented by a single firm in the sample. In this context, the farms selected
into the certainty strata would receive a weight of 1. The farms from the non-
certainty strata receive weights greater than 1. All models throughout the
article are estimated using the provided weights interpreted in Stata as
probability weights. The distribution of the sample weights within the group
of observations culled from the sample to address attenuation bias closely
mirrors the distribution of weights in the kept sample.

Results

Results of the water application models and crop allocation models are reported
in the following sections.

Water Application Estimation

Table 2 contains definitions, mean values, and hypothesized effects of the
variables that appear in the water application models. Table 3 contains the
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mean and standard deviation for each variable in the sample conditioned by
participation in irrigated production of the particular crop. At the intensive
margin, cross prices for the alternative crops are expected to have no effect.
They were excluded from the crop-specific models for two reasons. First, in
the absence of a firm water constraint, we expect that water application
decisions are made independently for each crop. Firm water constraints
certainly may exist in some cases, but we expect that it is a minority of cases.
Additionally, corn and soybean prices are highly correlated in the sample, so
the only opportunity to observe a meaningful cross price effect would be
among firms growing both potatoes and either corn or soybeans. This is a
small subset of the total number of firms.
Table 4 contains results for the intensive margin specification where crop-

specific water application rate (inches/acre) was regressed as a linear
function of price and environmental conditions. In this and all subsequent
models, standard errors are clustered at the individual firm level. As
hypothesized, the relationship between water cost and water application rate
is significant and negative across all three crops.

Table 2. Summary of Variables: Water Application Models

Variable Variable Definition (units) Mean (sd)
Expected
Effect

Dependent

Corn irrigation Inches applied per acre 7.0 (3.5)

Soybean
irrigation

Inches applied per acre 6.4 (4.0)

Potato
irrigation

Inches applied per acre 9.6 (4.8)

Cost / Price

Cost of Water Dollar/Acre Inch 4.12 (2.59) �
Corn Price July price received ($/bu) 5.13 þ
Soybean Price July price received ($/bu) 12.58 þ
Potato Price July price received ($/cwt) 9.26 þ

Environmental

Precipitation July-August accumulation (inches) 5.80 (2.26) �
Temperature July-August mean daily maximum

(°C)
27.83 (1.12) þ

Humidity July-August mean relative
Humidity (%)

76.26 (7.36) �

EHDD Extreme Heat Degree Days 1.79 (3.14) þ
Soil Quality Percent of county area in soil

capability class 1 or 2
61.12 (28.51) �
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Precipitation, temperature, and humidity variables were included at a peak
irrigation season time scale (aggregated over July and August). The
coefficient on precipitation is negative across the three crops and significant
for corn. The effect of humidity is negative for all crops and significant across
corn and soybean. The effect of temperature is positive for all crops and
significant for soybean and potato. EHDD has the expected positive effect and
is significant for corn and soybean. The soil quality measure has the expected
sign and is significant across all crops. Finally, the coefficient for crop price is
not significant across the three crops.
The estimated water-price irrigation demand elasticities are similar across

the three crops (see Table 5). These elasticities are within the range of those
found in existing literature, although elasticities reported in the literature
vary widely (see Table 6). The elasticities estimated in this article are
somewhat larger than elasticities estimated in a relatively water abundant
context elsewhere (Mullen, Yu, and Hoogenboom 2009).
The model was estimated with state and year fixed effects and separately

with county and year fixed effects to control for additional unobserved
heterogeneity (see Appendix A). The estimates on water price, precipitation,
and EHDD are similar across the two model specifications. The estimates on
temperature are somewhat sensitive to the spatial fixed effect specification.
Estimates on the crop price variables are not significant across the
specifications. This may be explained in part by the limited variation in the
crop price data.

Table 3. Water Application Model Variables: Means and (Standard
Deviations) for Full Sample and Conditional on Irrigation of Specific Crop

Variable Full Sample Corn Soybean Potato

Dependent

Irrigation NA 7.0 (3.5) 6.4 (4.0) 9.6 (4.8)

Cost/Price

Cost of Water 4.12 (2.59) 4.10 (2.55) 3.98 (2.49) 4.70 (2.85)

Crop Price NA 5.13 12.58 9.26

Environment

Precipitation 5.80 (2.26) 5.80 (2.30) 5.93 (2.30) 5.46 (1.59)

Temperature 27.83 (1.12) 27.87 (1.11) 27.98 (1.14) 27.11 (1.04)

Humidity 76.26 (7.36) 76.23 (7.35) 75.79 (7.43) 76.52 (6.59)

EHDD 1.79 (3.14) 1.86 (3.17) 2.00 (3.31) 0.60 (1.45)

Soil Quality 61.12 (28.51) 62.29 (27.88) 63.48 (26.27) 33.35 (27.77)

N 4,737 4,289 2,866 468
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Crop Allocation Estimation

Table 7 contains a summary of the variables, mean values, and hypothesized
effects for the crop allocation models. Crop allocation decisions are assumed to
be driven by long-term climate conditions with adjustments made at the
margins in response to updated perceptions of environmental conditions.
Table 8 contains the means and standard deviations for the variables that
appear in the crop allocationmodels conditioned on participation in the given crop.
Table 9 contains results for the extensive margin estimation where crop-

specific irrigated land allocation (acres) was estimated as a function of price
and environmental conditions. The crop-specific allocation models were
estimated using the tobit estimation procedure to account for the pool of
observations that allocated zero irrigated acres to a particular crop.
The effect of water cost is significant and negative for corn and soybeans. The

effect of water cost on potato acreage is positive, significant, and larger in
magnitude than for corn or soybeans. These results indicate that increasing
water cost causes farms to substitute potato production for corn and soybean

Table 4. Water Application Models: Estimated Coefficients

Corn Soybean Potato

Water Cost �0.502 �0.426 �0.569

(0.024)** (0.031)** (0.083)**

Peak Season

Precipitation �0.193 �0.085 �0.036

(0.039)** (0.069)* (0.173)

Temperature 0.088 0.274 0.956

(0.105) (0.129)* (0.329)**

Humidity �0.039 �0.043 �0.092

(0.017)* (0.020)* (0.081)

EHDD 0.131 0.103 0.204

(0.034)** (0.047)* (0.302)

Soil Quality �0.013 �0.019 �0.045

(0.003)** (0.004)** (0.011)**

Crop Price �0.335 0.487 0.237

(own-price) (0.248) (0.282) (0.566)

Constant 11.384 1.082 �10.477

(2.930)** (3.795) (13.973)

R2 0.20 0.16 0.32

N 4,289 2,866 468

*p< 0.05; **p< 0.01
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production. This is unexpected due to the water intensity of potato production.
However, potatoes are a higher-value crop than corn or soybeans, receiving an
estimated $3,900/acre in revenue in 2017 compared to $530 and $400 for corn
and soybeans, respectively (USDA Quick Stats 2016). Firms may optimally
increase potato production in response to higher water costs because, despite
the greater water intensity of potato production, water costs are a smaller
percentage of per acre production costs. Relatedly, the marginal value
product of irrigation water for potato production is greater than corn or
soybean production.
It is possible that unobserved environmental factors that are favorable for

potato production are positively correlated with water cost. Alternatively,
unobserved heterogeneity in production contract participation may affect the
results. Potato producers commonly operate under production contracts that
may require a certain level of irrigation capacity. It is possible that potato-
producing firms tend to have greater irrigation capacity and subsequently
face higher short-run fixed costs of irrigation (e.g., greater fixed electric
charges). Unfortunately, the FRIS data does not provide a viable indication of
whether a firm operates under a production contract. The results of a mean
comparison t-test indicate that potato producers pay higher costs for water
(mean difference¼ 0.58, p< 0.01).
To check the robustness of the land allocation models to the specification of

functional form, the model was estimated with crop-specific linear regression.
Among all three crop models, all effects are similar in magnitude and direction

Table 5. Water Application: Point Elasticity Estimates

Corn Soybean Potato

Water Cost Coefficient �0.50 �0.43 �0.57

Elasticity �0.29 �0.26 �0.28

Table 6. Short-Run Water Cost Elasticities in the Literature

Data Years Region Elasticity*

Mieno et al. 2016 2007–09, 2011–12 Nebraska �0.53

Hendricks et al. 2012 1992–2007 Kansas �0.10

Mullen et al. 2009 2000 Georgia �0.095(0.07)

Schoengold et al. 2006 1994–2001 California �0.30(0.17)

Moore et al. 1994 1984, 1988 Western U.S./Plains 0.01(0.10)

Scheierling et al. 2006 1975 Various West/Plains �0.48(0.53)

*Where multiple elasticities are reported, values in table are means (standard deviation)
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Table 7. Summary of Variables: Crop Allocation Models

Variable Variable Definition (units) Mean (sd) Expected Effectˆ

Dependent

Corn Acres Irrigated Acres 419 (560)

Soybean Acres Irrigated Acres 220 (276)

Potato Acres Irrigated Acres 724 (1229)

Cost / Price

Cost of Water Dollar/Acre Inch 4.01 (2.47) �
Composite Price* Marketing year price received corn soybean average ($/bu) 8.12 (2.35) �
Potato Price* Marketing year price received ($/cwt) 8.53 (1.36) þ

Environmental

30yr Precipitation 30-year normal growing season precipitation 19.28 (1.19) þ
30yr Temperature 30-year normal growing season average daily max temperature 25.47 (1.43) �
Peak Temperature* July-August mean maximum daily temperature (°C) 29.17 (1.83) �
Peak Precipitation* July August accumulation (inches) 7.67 (3.61) þ
EHDD* Heating Degree Days 13.87 (22.68) �
Soil Quality Percent of county area in soil capability class 1 or 2 61.23 (28.48) þ

*Starred variables are lagged by one year.
ˆExpected effects indicate substitution toward more (þ) or less (�) potato production.
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to the tobit effects, except for the effects of water cost and potato price in the
potato acreage model. This indicates that the effects of water cost and potato
price on potato production are sensitive to functional form. The remaining
effects in the corn and soybeanmodels are robust to the differing functional forms.
Importantly, long-run average temperature has a large and statistically

significant effect across both sets of models. This effect indicates that the
acreage allocation to potato production is highly sensitive to average
temperature. Long-run average temperature is the most important factor
affecting substitution decisions between potatoes and corn/soybeans.
Coefficients for the climate, weather, and price variables generally indicate the

expected effects. There is a large, positive, and significant effect of the composite
price on corn acreage. The effect of the composite price on soybean acres is
negative. It may be that the soybean acreage substitution effect is dominated
by the corn effect. Potato price has a large positive and significant effect on
potato acreage, but this effect does not persist in the linear specification.

Discussion and Conclusions

Results of the analysis suggest particularly important implications related to
climate and weather effects and to water price effects. A discussion of the
limitations of this study is also warranted.

Table 8. Crop Allocation Model Variables: Means (and Standard Deviations)
Conditional on Irrigation of Specific Crop

Variable Corn Soybean Potato

Dependent

Irrigated Acres 419 (560) 220 (276) 724 (1229)

Cost/Price

Cost of Water 4.08 (2.55) 3.98 (2.49) 4.70 (2.85)

Composite Price 8.14 (2.35) 7.97 (2.37) 7.59 (2.36)

Potato Price 8.54 (1.37) 8.49 (1.37) 8.99 (1.20)

Environment

30yr Temperature 25.46 (1.43) 25.59 (1.46) 24.16 (1.19)

30yr Precipitation 19.27 (1.20) 19.33 (1.17) 18.76 (1.34)

Peak Temperature 29.16 (1.82) 29.26 (1.87) 27.95 (1.46)

Peak Precipitation 7.67 (3.62) 7.73 (3.60) 7.50 (2.87)

EHDD 13.84 (22.65) 14.60 (23.98) 6.02 (11.83)

Soil Quality 62.30 (27.88) 63.48 (26.28) 33.35 (27.78)

N 4,289 2,866 468

Note: Each column includes the subset of the sample that irrigates the given crop.
Standard deviations appear in parentheses.
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Climate and Weather Effects

Nonlinear effects of temperature and precipitation on crop yields have received
some attention in the literature on climate change and agriculture (Hendricks
2018; Zhang, Zhang, and Chen 2017; Schlenker and Roberts 2009; Ritchie
and NeSmith 1991), but these effects have been unaddressed in much of the
existing irrigation water demand literature. The results of the water
application models indicate that extreme heat has an important effect on
irrigation water demand. The effect of extreme heat on water application
rates indicates that increasing summer temperatures due to changing climate
conditions would likely increase water demand throughout the region. The
explored measures of precipitation variability do not significantly affect water

Table 9. Crop Acreage Allocation: Tobit Average Partial Effects

Corn Soybean Potato

Water Cost �10.22 �7.25 40.96

(1.81)** (1.74)** (10.49)**

Total Irrigated Acres 0.39 0.15 0.37

(0.01)** (0.02)** (0.04)**

Composite Price Lag 165.64 51.85 �581.86

(51.07)** �48.66 �369.81

Potato Price Lag �20.83 �12.31 74.46

�10.84 �11.58 �87.03

Soil Quality 0.82 0.03 �3.3

(0.17)** �0.2 (1.28)*

30yr Grow-season Max 52.58 88.6 �412.89

(15.37)** (17.08)** (137.93)**

30yr Grow-season Precipitation 27.69 15.67 10.69

(5.24)** (5.38)** �37.88

Peak Temperature Lag �38.56 �49.37 183.17

(15.91)* (17.16)** �137.11

Peak Precipitation Lag 2.88 �0.14 �21.29

�1.65 �1.82 �12.31

EHDD Lag �0.3 1.22 0.5

�0.47 (0.46)** �3.79

N 4,737 4,737 4,737

N Censored 448 1,871 4,269

*p< 0.05; **p< 0.01
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demand in the context of this study, but future research should explore their
effects on water demand in other settings.
Long-run climate conditions are significantly predictive of crop allocation

decisions. Potato production is particularly sensitive to temperature. This
result indicates that increasing summer temperatures may reduce the
favorability for potato production in the region and may cause producers to
substitute toward corn, soybeans, or other crops not addressed in this study.
The following hypothetical scenarios are illustrative examples of potential

effects of climate change on irrigation demand. First, consider an increase in
long-run average temperature. Hayhoe et al. (2010) concluded that average
temperatures in the Great Lakes Region are likely to increase by at least 1.3°C
under lower and up to 4°C under higher emissions scenarios by mid-century
(2040–2069). All else being equal, the projected increase in average
temperature is likely to cause firms to substitute away from potato
production. This effect is expected to reduce per-acre water applications by
approximately 25 percent. The average potato producer would use 424 fewer
acre-inches (35 acre-feet) farm-wide per year after switching all potato
acreage to corn and soybeans. This effect is particularly important in the
northern part of the region (MI, MN, WI) where potato irrigation contributes
a larger share of all irrigation activity. However, in most of the region, this
effect would likely be outweighed by a second important temperature effect.
A second major effect is the increase in water applications due to extreme

heat events. Vavrus and Van Dorn (2010) concluded that the number of
extreme days (daily max temperature > 32°C) is likely to increase from 15
days/year in the late 20th century to 36 days under low or 72 days under
high emission scenarios by the end of this century. Using a conservative
estimate of an additional eight days exceeding the threshold for extreme heat
(measured here as daily maximum temperature > 34°C) by one degree, firms
are expected to increase water applications on corn and soybeans by 14.5
percent. For the average firm, this would amount to 315 acre-inches (26.3
acre feet) farm-wide.
To understand the total combined effects of extreme heat and average

temperature, we constructed, for each state, a hypothetical firm statistically
representative of the state’s irrigation activity. Within each state, the
representative firms’ irrigated acreages were calculated as the mean irrigated
acreage for each crop among all irrigating firms in the sample. Table 10
contains estimated temperature effects for a statistically representative firm
in each state and the region as a whole. All else being equal, this firm is
expected to respond to the hypothetical mid-century temperature scenario by
increasing water applications by 9 percent overall. The effect in each state
varies primarily due to differences in the share of irrigated acreage in potato
production. The states in the southern part of the region—IL and IN—are
expected to experience somewhat larger impacts, 14 percent and 16 percent,
respectively, because they have a smaller share of irrigated acreage in potato
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Table 10. Expected Temperature Effects* on Mid-Century Water Applications for Statistically Representative
Firms

IL IN MI MN WI Region

Current Irrigated Acres Corn 267.2 222.2 311.7 194.9 176.5 235.8
Soybean 94.0 85.0 91.6 78.6 57.2 82.7
Potato 5.2 1.1 63.0 48.9 134.5 44.2

Application Rate (inches per
acre)

Corn 7.3 6.2 6.4 7.4 7.7 7
Soybean 7.1 5.6 5.4 6.9 6.8 6.4
Potato 7.9 8.1 9.1 9.3 10.2 9.6

Applications (acre inches) Corn 1950 1378 1995 1442 1359 1651
Soybean 668 476 495 542 389 530
Potato 41 9 574 454 1372 424
Total 2659 1862 3064 2439 3120 2605

Mid-Century
Expectation

Irrigated Acres Corn 270.8 223.0 355.8 229.1 270.6 266.8
Soybean 95.6 85.3 110.6 93.2 97.6 96.0
Potato 0.0 0.0 0.0 0.0 0.0 0.0

Application Rate (inches per
acre)

Corn 8.3 7.2 7.4 8.4 8.7 8.0
Soybean 7.9 6.4 6.2 7.7 7.6 7.2
Potato 9.5 9.7 10.7 10.9 11.8 11.2

Applications (acre inches) Corn 2261 1616 2650 1936 2367 2147
Soybean 758 548 688 720 744 694
Potato 0 0 0 0 0 0
Total 3018 2164 3338 2656 3111 2840

Change Applications Acre-
Inches

359 302 275 217 �9 236

% change 14% 16% 9% 9% 0% 9%

*Effects estimated assuming a 2.65°C increase in average temperature and an additional 8 extreme heat degree days (EHDD threshold¼ 34°C) by midcentury.
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production. In WI, the combined effects negate each other, resulting in
approximately zero net effect.
In regions where the spatial distribution of such increases in water demand

aligns with the spatial distribution of limited water availability, including
areas where total withdrawals are restricted as a result of Great Lake
Compact implementation, there is a heightened likelihood of conflict over
water access. Other regions, where potato production is highly concentrated,
may experience net reductions in water applications if the observed
substitution effect persists.
In sum, agricultural activity and irrigation practices in the region are likely to be

affected by changes in both long-run average climate conditions and short-run
weather events. The results discussed here provide evidence that temperature
is an important determinant of irrigation water demand both in terms of long-
run average conditions and short-run extreme heat events. At watershed scales,
the net water use effects depend on regional production patterns.

Price Effects

Firms respond to the cost of water by adjusting water application rates at the
intensive margin. In the Great Lakes Region, the intensive margin response to
water cost dominates the extensive crop allocation response. This result
aligns with the conclusions of Mullen, Yu, and Hoogenboom (2009), who
found that the intra-seasonal water application effect dominates the crop
allocation effect in the southeastern U.S. This appears to be a distinction
between water-abundant and water-scarce regions where crop allocation
decisions appear to dominate the response to water cost (Moore, Gollehon,
and Carey 1994). Firms in the sample are somewhat less responsive to crop
prices than firms in the southeastern U.S. (Mullen, Yu, and Hoogenboom 2009).

Limitations

The results of this study should be understood in the context of the relevant
limitations of the models and underlying data. Importantly, observations are
spatially identified at the county level. Some firms that operate in multiple
counties are identified by their primary county. This spatial proxy for firm
location introduces some error in all environmental and price variables
which may attenuate the resulting effects. Additionally, general equilibrium
effects and development of new adaptation strategies may confound the
expected effects over longer time periods. For example, development of
drought-resistant crop varieties might reduce water applications and reduce
crop substitution effects. The net effect of such changes is ambiguous,
depending on the magnitude of each effect. Additionally, this study is limited
in the degree that it explores spatial variation in effects across the Great
Lakes Region. There is an opportunity for future studies to explore how the
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average regional effects identified in this study might vary for specific
subregions.
The FRIS questionnaire distinguishes between sweet corn, corn for silage or

green-chop, and corn for grain or seed. Production for grain or seed was
included in this article because the majority of the region’s irrigated corn
acreage is in this category. This grouping, however, does not allow for
identification of seed vs. grain producers. There may be significant
differences in management practices between these two types of producers.
Seed producers commonly operate under production contracts that are likely
to affect firm expectations of crop price and may change irrigation
management decisions. Production contracts are also unidentified for potato
producers. Future research might explore the effects of tournament style or
other production contract structures on irrigation incentives.
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Appendix A County Fixed Effect Models
Water Application Models: Estimated Coefficients

Corn Soybean Potato

Fixed Effect State County State County State County

Water Cost �0.502 �0.495 �0.426 �0.425 �0.569 �0.635

(0.024)** (0.024)** (0.031)** (0.035)** (0.083)** (0.120)**

Peak Season

Precip. �0.193 �0.176 �0.085 �0.101 �0.036 �0.061

(0.039)** (0.047)** (0.069) (0.075) (0.173) (0.232)

Temp. 0.088 0.156 0.274 0.064 0.956 �1.29

(0.105) (0.313) (0.129)** (0.316) (0.329)** (1.567)

Humidity �0.039 �0.053 �0.043 �0.073 �0.092 �0.299

(0.017)* (0.025)* (0.020)* (0.033)* (0.081) (0.102)**

EHDD 0.131 0.094 0.103 0.092 0.204 0.673

(0.034)** (0.046)* (0.047)* (0.051) (0.302) (0.554)

Soil Quality �0.013 �0.092 �0.019 �0.051 �0.045 �0.079

(0.003)** (0.023)** (0.004)** (0.022)* (0.011)** (0.044)

Crop Price �0.335 �0.400 0.487 0.467 0.237 0.592

(own-price) (0.248) (0.282) (0.282) (0.307) (0.566) (0.736)

R2 0.20 0.32 0.16 0.29 0.32 0.60

N 4289 4289 2866 2866 468 468

*p< 0.05; **p< 0.01
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