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Testing commutativity of a group and the power of randomization

Igor Pak

Abstract

Let G be a group generated by k elements, G = 〈g1, . . . , gk 〉, with group operations
(multiplication, inversion and comparison with identity) performed by a black box. We prove
that one can test whether the group G is abelian at a cost of O(k) group operations. On the
other hand, we show that a deterministic approach requires Ω(k2) group operations.

Introduction

LetG be a finite black box group (see for example [3]), defined as follows. The elements are given
as binary strings of a fixed length, say N , and a ‘black box’, also called an oracle, performs
group operations: multiplication, inversion and the recognition of the identity element. The
group G is assumed to be given by a generating set S = {g1, . . . , gk}, 〈S〉=G.

Examples of black box groups include groups defined as subgroups of certain large groups H.
In this case G is generated by a set S ⊂H. When H is isomorphic to Sn, these are called
permutation groups and, when H 'GL(n, Fq), these are called matrix groups. Permutation
groups so far remain the best understood class of these, with the most efficient algorithms
available. These algorithms were built on the fundamental algorithms of Sims [24] that made
it possible to determine group membership and group order. Matrix groups are often difficult
to work with, and many algorithms are defined in a generality of black box groups (see [3]).
We refer to [12, 22, 27] for extensive overviews of various aspects of recognition and property
testing in black box, permutation and matrix groups.

In this note we resolve the basic problem of testing whether a black box group is abelian.
A simple deterministic algorithm, consisting of checking whether [gi, gj ] = id for all i 6= j, is
shown to be optimal up to a constant. On the other hand, in a probabilistic setting when a small
probability of error is allowed, there exists a randomized algorithm which tests commutativity
of a group at a cost of O(k) group multiplications. This is another example of what we call the
power of randomization.

As an application of our technique, we show that testing commutativity of matrix groups
can be done in time linear in the size of the input. This is done by combining our main routine
and the Freivalds approach [9]. Finally, we speculate that a solvability test can be performed
in nearly linear time.

This is perhaps the first time when commutativity testing was asked in a generality of black
box groups. The reason, probably, is the simple O(k2) deterministic algorithm described above,
which is fast enough for most practical and theoretical needs (k tends to be small in practice).

We should mention that various other properties (whether G is nilpotent, solvable, etc.) have
been studied in various settings (see [4, 6, 7, 14]). Our randomized algorithm, when used as
a subroutine, easily improves complexity of some of these advanced algorithms.

Before we finish, let us clarify an important difference between our work and the work on
testing properties of relations, on group isomorphism, etc (see for example [5, 13, 15, 20,
26, 28]). In that case the input is a multiplication table, of size O(|G|2), while in our case we
usually assume that k =O(log |G|).
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1. Randomized algorithm

Let G= 〈g1, . . . , gk〉 be a black box group. Define random subproducts

h= gε11 · . . . · g
εk
k ,

where εi ∈ {0, 1} are determined by independent flips of a fair coin. Now define the algorithm to
consist of a constant number of checks whether two independently chosen random subproducts
commute with each other. In black box notation, we will be testing whether [h, h′] = id. We
need the following result.

Lemma 1.1. Let G be non-abelian and let h, h′ be two independently chosen random
subproducts. Then

P([h, h′] 6= id) > 1
4 .

We need the following terminology. A probabilistic algorithm is called one-sided Monte Carlo
if for any ε > 0 in the input, when it outputs Yes, then the right answer is Yes with probability
>1− ε; but when it outputs No, then the right answer is indeed No, that is, with probability 1.
We call ε the probability of error.

Everywhere below we denote by µ the cost of group operations, and by ν the cost of identity
recognition.

Theorem 1.2. Let G be a black box group generated by k elements. There exists a one-sided
Monte Carlo algorithm for testing whether the group is abelian, at a cost O(k log(1/ε)(µ+ ν)),
where ε > 0 is the probability of error.

Observe that Lemma 1.1 immediately implies Theorem 1.2. Before we prove the crucial
Lemma 1.1, let us first prove the following preliminary result.

Lemma 1.3. Let G= 〈g1, . . . , gk〉, H (G and let h be a random subproduct. Then
P(h /∈H) > 1

2 .

Proof of Lemma 1.3. Let i ∈ {1, . . . , k} be the smallest number such that gi /∈H. Write
the subproduct h as follows:

h=
(
gε11 · . . . · g

εi−1
i−1

)
· gεii · (g

εi+1
i+1 · . . . · g

εk
k ) = u · gεii · v.

Note that u ∈H. When v ∈H, with probability 1/2 we have εi = 1, and h= u · gi · v /∈H.
Similarly, when v /∈H, with probability 1/2 we have εi = 0, and h= u · v /∈H. This completes
the proof. 2

Proof of Lemma 1.1. Let G be non-abelian. Then the center H = C(G) is a proper subgroup
of G. By Lemma 1.3, P(h /∈H) > 1/2.

Now assume h /∈H = C(G). Let H ′ be the centralizer C(h) of h. Then H ′ is also a proper
subgroup of G and P(h′ /∈H ′) > 1/2. But this is equivalent to [h, h′] 6= id. Therefore, the
probability that [h, h′] 6= id is >1/2 · 1/2 = 1/4. 2

Example 1.4. Theorem 1.2 implies that for checking whether G is abelian, O(k) group
multiplications suffice. While multiplication of permutations is linear in the size of the input,
the matrix multiplication is quite costly. Luckily, there is a way to avoid some of this cost.

Theorem 1.5. Let G⊂GL(n, Fq) be a group of n× n matrices over the finite field Fq,
given by k generators. Denote by η the cost of addition and multiplication in Fq. There exists a
one-sided Monte Carlo algorithm for testing whether G is abelian, at a cost O(n2k log(1/ε) η),
where ε > 0 is the probability of error.
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Proof. Suppose we need to check whether a matrix M =A ·B ·A−1 ·B−1 is Id. Rather
than multiply (and invert) matrices, this can be done by checking whether M v = v for random
v ∈ Fqn. Indeed, if M 6= Id, then the invariant subspace W = {v :M v = v} has codimension >1.
Therefore, with probability >1/2, we have v /∈W and M v 6= v. Further, observe that for all
matrices R, T ∈GL(n, Fq), the probability P(R v = T v) 6 1

2 , given R 6= T . Indeed, R v = T v
is equivalent to (T−1 R) v = v, and the claim follows from the previous observation.

Now let G= 〈g1, . . . , gk〉, gi ∈GL(n, Fq). Let A, B be independent random subproducts
of gi. Assume that G is non-abelian. Then, for random v ∈ Fqn, we have

P(AB v 6=B A v) = P(AB 6=B A) ·P(AB v 6=B A v |AB 6=B A) > 1
8 .

On the other hand, computing AB v takes O(k · n2) additions and multiplications in Fq.
Therefore, at a cost O(k n2η), we can discover that G is non-abelian with probability of error
≤7/8. This implies the result. 2

Remark 1.6. Lemma 1.1 is motivated by the following result. Let G be non-abelian group.
Then

P([h1, h2] = id) =
r(G)
|G|

6
5
8
,

where h1, h2 are uniform and independent in G and r(G) is the number of conjugacy classes.
The identity goes back to Frobenius [10], while the inequality is due to MacHale [16].

Let us note that the proof of the latter follows along the lines of the proof of Lemma 1.1.
Indeed, as the quotient G/C(G) of a non-abelian group cannot be cyclic, we have P(h1 /∈ C(G))
> 3

4 . Assuming h1 /∈ C(G), we have P(h2 /∈ C(h1)) > 1
2 , and therefore P([h1, h2] 6= id) > 3

8 .

Remark 1.7. Following [4, 6], testing whether a black box group G is solvable or nilpotent
can be done in time O(log3 |G| log log |G|(µ+ ν)), given k =O(log |G|). One can ask whether
this timing can be improved. We believe it can, assuming the following conjecture holds.

Conjecture 1.8. Let G be non-solvable and let h, h′ be two independently chosen random
subproducts. Then P(〈h, h′〉 is non-solvable ) > ε for some universal constant ε > 0.

The conjecture is motivated by Lemma 1.1, the previous remark and a recent result of
Guralnick and Wilson [11] that

P(〈h, h′〉 is non-solvable) > 11
30 , (∗)

where h, h′ are uniform and independent in G. The inequality is tight for G=A5.
Let us remark that the conjecture is open even for G=An. On the other hand, in (∗),

the probability P→ 1 as n→∞. Further, for two random permutations σ, σ′ ∈An, we have
P(〈σ, σ′〉=An)∼ 1− 1/n (see for example [23] for references and estimates for other simple
groups).

Theorem 1.9. Let G be a black box group generated by k elements. Assuming
Conjecture 1.8, there exists a Monte Carlo algorithm for testing whether the group is solvable
at a cost

O((k + L) log4(L) log(1/ε)(µ+ ν)),

where L6 log |G| is an a priori upper bound on the length of the longest subgroup chain of G
and ε > 0 is the probability of error.

For example, if k = θ(log |G|), this gives a nearly linear algorithm for testing solvability. Note
also that if G⊂ Sn, then L6 2n (see references in [4]).
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Proof. First, choose C independent random subproducts 〈h1, . . . , hC〉=H1. Their O(C2)
commutators generate a subgroup whose normal closure is H ′ = [H1, H1]. Compute all O(C3)
conjugates [hi, hj ]hr of the commutators by the generators of H1. Now compute C independent
random subproducts of these which generate H2. Repeat the procedure. Stop after L iterations.
If the obtained group HL is non-trivial, then G is non-solvable and, if HL is trivial, then G is
solvable, both claims with probability of error α. Below, we show that the error α defined here
is constant.

Observe that if the number of subproducts C = C(α) is chosen appropriately, then, at each
step, C random subproducts generate a non-solvable group with probability >1− α/L. After
L iterations the group HL is then trivial or perfect, depending on whether G is solvable or
non-solvable with probability of error <α. Now check that it suffices to take C = dlog(L/α)e.
This follows from Conjecture 1.8 and the independence of successive random subproducts pairs
that we sample.

Compute the cost of the algorithm. It costs O(C k µ) to generate the first C subproducts.
It costs O(C3 µ) to compute O(C3) commutator conjugates, O(C4 µ) to compute C random
subproducts of these, etc. The total number of iterations is L and, at each but the first one,
the cost is O(C4 µ). Thus, the total cost is as in the theorem†.

Finally, let α= 1/4. Perform O(log(1/ε)) of the tests as above and choose the most frequent
answer. Now use the Chernoff bound to prove that it is correct with high probability >1− ε. 2

Remark 1.10. The notion of random subproducts goes back to Erdős and Rényi [8].
Versions of Lemma 1.3 had previously appeared in connection to various permutation group
algorithms (see [4, 6, 7]). The problem of testing whether the group is abelian was motivated
by the randomized algorithms for generating random elements in finite groups (see for
example [19]). Note also that the algorithm applies to infinite black box groups as well, such as
subgroups of SL(n, Z). Finally, the conjectured algorithm for testing whether a group is solvable
can be transformed to test whether a group is nilpotent with little difficulty. Conjecture 1.8
seems to be also somewhat related to additive combinatorics on non-commutative groups [25].

2. Deterministic algorithm

We first need to define our model of computation. As before, we assume that the group G is
given as a black box group with k generators g1, . . . , gk. We assume that the multiplication and
inversion (both at cost µ) and recognition of identity (called identity test, performed at cost ν)
are done by an oracle. The ‘commutativity checker’ is allowed to start with the generators and
obtain new group elements out of these. Namely, at any time the checker can multiply any of
the two elements found, invert any of them and compare any of them with the identity. The
decision of which operation to perform can also depend on the previous observations of the
checker. The goal of the checker is to determine whether G is abelian.

Theorem 2.1. Every deterministic algorithm as above for testing whether a black box
group G generated by k elements is abelian works at a cost Ω

(
k2(µ+ ν)

)
. Moreover, every

such algorithm requires at least
(
k
2

)
identity tests.

Proof. First we show that the checker needs at least N =
(
k
2

)
calls for the identity test oracle.

We will design a strategy (of which answers to give) for an adversary of the checker, so that
after fewer than N such calls, there exist an abelian group A and a non-abelian group B, which
satisfy all the answers.

The adversary starts with A= Zk2 and B =B0, where the latter is defined as

B0 = 〈x1, . . . , xk〉/(x2
i = [xi, xj ]2 = [xi, [xj , xr]] = id).

†In fact, the term involving k is much smaller, but for k = o(L) small this term is irrelevant anyway.
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By definition, B0 is a central extension of A, and the center C(B0)' ZN2 is a group generated
by all commutators [xi, xj ]. We think of elements g ∈B0 as words

g = xε11 . . . xεkk · [x1, x2]α1,2 · [x1, x3]α1,3 . . . [xk−1, xk]αk−1,k ,

where εi, αj,r ∈ {0, 1}, 1 6 i6 k, 1 6 j < r ≤ k.
After the ith call, 1 6 i < N , the adversary keeps an abelian group A and produces a new

non-abelian group Bi as a quotient of Bi−1. By abuse of speech, denote by S = {x1, . . . , xk}
the natural set generators in both A and Bi.

Now, suppose at call i the checker asks whether the word wi in generators x1, . . . , xk is id
or not. The adversary always answers depending on what is the truth in A. If indeed wi = id in
A, then the adversary sets Bi =Bi−1/〈wi〉. Observe that wi = id in A only if wi is equal in A
to a product of commutators [xj , xr]. Now use induction to conclude that Bi is a nilpotent
group of class 2 with center of rank >N − i.

We conclude that after i < N calls of the identity recognition oracle, the checker is unable
to distinguish between A and Bi, where the former group is abelian and the latter is not. This
implies that the cost is Ω(k2ν). Note also that for the algorithm to work one needs words wi
to generate the group ZN2 generated by the commutators. But this requires at least N different
words and therefore at least N group operations. Thus, the total cost is also Ω(k2µ), which
completes the proof. 2

Remark 2.2. Recall the simple deterministic algorithm which consists of checking
commutativity of all

(
k
2

)
commutators. Observe that the lower bound in Theorem 2.1 is tight

up to a small constant then. We believe that this algorithm is actually the fastest in our model
of computation.

Remark 2.3. By analogy with the lower bound in Theorem 2.1, one can obtain a lower
bound Ω(kl/l) for testing whether a group is nilpotent of class <l. This is particularly
striking in comparison with polynomial (in both k and l < log |G|) randomized algorithms
(see Remark 1.7).

To prove the above lower bound, apply the Witt formula (see [18]) to obtain a bound on
the dimension for the free Lie algebra on k generators of degree l. This gives a lower bound
Ω(kl/l) on the number of words w to be used to ensure that all the commutators of length l
in gi are trivial. The proof follows if one proceeds as in the proof of Theorem 2.2.

Remark 2.4. In the study of black box groups it is often convenient to assume the
knowledge of the upper bound M on the size of the group (in [2], Babai proved an exponential
lower bound for approximating the size of a black box group). For example, for matrix groups
or permutation groups this is the size of the group it is imbedded into. A straightforward
modification of the proof gives the same lower bound under the assumption that k < blog2 Mc.
It would be interesting to extend this bound. Of course, the lower bound is false for large k:
there exists an easy algorithm which lists group elements and compares and commutes new
ones with them, at a cost O(kM(µ+ ν)).

Remark 2.5. Since this paper appeared in a preprint form, both the lower and upper
bounds found applications to quantum algorithms and quantum complexity [1, 17, 21].
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