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ABSTRACT

Archaeologists frequently use probability distributions and null hypothesis significance testing (NHST) to assess how well survey, excavation,
or experimental data align with their hypotheses about the past. Bayesian inference is increasingly used as an alternative to NHST and, in
archaeology, is most commonly applied to radiocarbon date estimation and chronology building. This article demonstrates that Bayesian
statistics has broader applications. It begins by contrasting NHST and Bayesian statistical frameworks, before introducing and applying
Bayes's theorem. In order to guide the reader through an elementary step-by-step Bayesian analysis, this article uses a fictional archaeo-
logical faunal assemblage from a single site. The fictional example is then expanded to demonstrate how Bayesian analyses can be applied
to data with a range of properties, formally incorporating expert prior knowledge into the hypothesis evaluation process.
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Los arquedlogos utilizan con frecuencia distribuciones de probabilidad y la prueba de significancia de la hipétesis nula (NHST por sus siglas
en inglés) para evaluar qué tan bien se alinean los datos de estudios, excavaciones o experimentos con sus hipétesis sobre el pasado. La
inferencia bayesiana se usa cada vez mas como alternativa a NHST y, en arqueologia, se aplica mas cominmente a la estimacion de fechas
de radiocarbono y la construccion de cronologias. Este articulo demuestra que las estadisticas bayesianas tienen aplicaciones mas amplias.
Comienza contrastando los marcos estadisticos NHST y Bayesiano, antes de introducir y aplicar el teorema de Bayes. Con el fin de guiar al
lector a través de un andlisis bayesiano elemental paso a paso, este articulo utiliza un conjunto ficticio de fauna arqueoldgica de un solo
sitio. Luego, el ejempilo ficticio se amplia para demostrar cémo se pueden aplicar los analisis bayesianos a datos con una variedad de
propiedades, incorporando formalmente el conocimiento previo de los expertos en el proceso de evaluacién de hipétesis.

Palabras clave: estadistica bayesiana, modelos de probabilidad frecuentista, prueba de hipédtesis, arqueoestadistica

Many archaeologists are familiar with Bayesian statistics in the
context of radiocarbon date calibration and chronology building.
However, the Bayesian framework has broader applications
beyond dating and chronology that are worthy of consideration by
archaeologists. For example, many researchers in the natural and
social sciences are using Bayesian statistics to evaluate how well
observational or experimental data align with their hypotheses.
For the most part, this use of Bayesian inference has not been
applied to archaeology. Using a fictional zooarchaeological
example, this article provides a straightforward explanation of
Bayesian inference and compares it to the more conventional
null hypothesis significance testing (NHST). Although some

have previously described and reviewed the application of these
concepts elsewhere (e.g., Buck and Meson 2015; Buck et al. 1996;

0 This article has earned badges for transparent research practices: Open
Data, Open Materials. For details see the Data Availability Statement.

Otérola-Castillo and Torquato 2018; Otérola-Castillo et al. 2022;
Wolfhagen 2019, 2020), this work is focused on presenting rep-
licable step-by-step examples of the Bayesian framework for
evaluating and discerning among competing hypotheses.

R Markdown code to reproduce all materials presented here is
available in an OpenScience Framework repository: https://osf.io/
54t62/. In addition, a Spanish translation of this manuscript is
available with this article’s supplemental materials (Supplemental
Text 1). Likewise, Spanish readers may find reproducible code at
https://osf.io/23bdt/.

UNCERTAINTY AND PROBABILITY IN
ARCHAEOLOGICAL APPLICATIONS

All data are uncertain. Measurements and observations are not
exact, and their resulting values are variably imprecise. Ar-
chaeologists routinely use statistical quantities such as variance,
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standard deviation, and standard error, which rely on probability
theory to describe this uncertainty. In their field and lab work,
archaeologists regularly use equipment that relies on probabilistic
descriptions of uncertainty. For example, the manufacturer of total
stations, widely used to map archaeological sites, has stated
accuracies of 2 mm plus an additional 2 mm per km, usually at the
16 standard deviation level (e.g., Leica TS16). This is an example of
a probability concept used to measure “random” uncertainty. In
this case, assuming a “normal” probability distribution for the
measurement error (although the manufacturer does not specify
this), archaeologists should expect that 68% of the locations of
artifacts mapped by this instrument will have an error up to

+2 mm, plus error related to increasing distance (and error due to
atmospheric conditions, instrument stability, etc.; Walker and
Awange 2020). Similarly, the manufacturer’s specification sheet for
a typical Ohaus (Scout STX2202) portable digital scale claims to
measure up to 2,200 g, with an error of £0.02 g (10). Like total
stations, if we assume a normal error model, this means that the
manufacturer certifies that 68% of all readings will be within
+0.02 g of the true reading under ideal circumstances.

Similarly, after careful data collection and analyses, archaeologists
also apply the concept of probability to test their hypotheses.
These are formal statements that offer plausible explanations of
the observed patterns of people or their environment in the past.
Like the statements about field and laboratory instrument mea-
surements, these hypotheses and their predictions also possess
some degree of uncertainty due to incomplete observation or
knowledge. To formally quantify uncertainty about data and
hypotheses, archaeologists frequently rely on specific probability
models or probability functions (i.e., equations). The inputs of a
probability function are observed or hypothesized values, and the
outcomes are their probabilities ranging from 0 to 1T—that is, from
least to most probable. Archaeologists use this probabilistic sys-
tem to test their hypotheses and describe the degree of uncer-
tainty with which their hypotheses account for current and likely
future observations. Using a probabilistic approach gives archae-
ologists a powerful and systematic tool that makes it possible to
interpret data and evaluate hypotheses.

Below, we provide an overview of the central concepts of the two
major probability paradigms to evaluate hypotheses: NHST and
Bayesian inference. Whereas most scientists widely use NHST,

the Bayesian approach is considered a modern data-driven learning
system that has enjoyed increasing application to archaeology
(Buck and Meson 2015; Buck et al. 1996; Howson and Urbach 2006;
Jaynes 2003; Otérola-Castillo and Torquato 2018; Otérola-Castillo
et al. 2022).

NULL HYPOTHESIS SIGNIFICANCE
TESTING

As the prevailing statistical framework in most sciences, NHST
enables practitioners to use their data to evaluate hypotheses.
This approach is rooted in the early twentieth-century develop-
ment of goodness of fit tests (Fisher 1922; Pearson 1900), experi-
mental design, p-values (Fisher 1925, 1935), confidence intervals
(Cls), and hypothesis testing (Neyman and Pearson 1933:294). This
methodology was introduced to archaeology in the mid-twentieth
century (e.g., Binford 1964; Clarke 1968; Myers 1950; Spaulding
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1953; Vescelius 1960). Applications of NHST in archaeology con-
tinue today, supported by new archaeology-specific statistical
textbooks (e.g., Banning 2020; Baxter 2003; Carlson 2017; Drennan
2009; Fletcher and Lock 2005; McCall 2018; Shennan 1997;
Thomas 1986). These textbooks provide detailed treatment of
NHST and its procedures in the context of archaeology (for a
multidisciplinary introductory textbook to NHST, see, for example,
Diez et al. 2019).

In general, however, the NHST paradigm revolves around the
concept of theoretically repeated sampling over the long term and
the Central Limit Theorem (CLT; Diez et al. 2019:172). The CLT
informs NHST's approach to hypothesis description and evaluation.
The theorem shows that given a large enough sample, in many
cases, the summary statistics (e.g., mean or standard deviation) will
follow a normal distribution. For instance, after sampling the same
population multiple times, the means of individual samples will be
normally distributed. This distribution is known as the sampling or
“null” distribution of the statistic. Because this phenomenon occurs
often, even if the original variable was not normally distributed, this
concept applies to many situations and data. The CLT further links
sample statistics to their null distributions, such as the mean,
through its “standard error.” According to the CLT, the standard
error of a sample’s mean estimates the standard deviation of the
mean’s null distribution. One may compute this quantity by divid-
ing the sample’s standard deviation by the sample’s size.

The CLT is helpful to archaeologists who often sample from a
target population—a group of individuals, artifacts, events, mea-
surements, or other phenomena that they wish to study. The aim is
to use the sample to test a priori hypotheses about quantifiable
characteristics of the sampled population. Statisticians refer to
these characteristics as the population parameters. For example, a
population’s mean and standard deviation parameters represent
its central tendency and variability, respectively. Sample statistics
function as estimates of the population parameters and are
therefore also known as the “parameter estimates.” These statis-
tics are used to test hypotheses about their respective population
parameters. NHST requires archaeologists to state only two
hypotheses: a “null” and an “alternative” hypothesis to evaluate.
Null hypotheses are quantitative statements of “no difference”
(difference = 0) between a hypothesized parameter value and its
sample statistic, or between a sample statistic and its counterpart
from another sample. Archaeologists often set up such null
hypotheses to evaluate whether a sample statistic resulted from a
population having the hypothesized parameter value (i.e., a one-
sample test). Alternatively, they may wish to know if the statistics
from two independent samples were drawn from the same
population (i.e., a two-sample test).

Alternative hypotheses are ordinarily simple statements negating
the null hypothesis. Once archaeologists state the null and alter-
native hypotheses, they then sample the population, or “collect
data,” and calculate the sample statistics. We should point out
that the NHST framework proceeds by assuming that the null
hypothesis is true and then using the sample data, summarized by
a statistic, to test that assumption. To do so, archaeologists use
the sample statistic to define a “test statistic” (frequently the z-, t-,
F-ratios, and XZ values; e.g., Diez et al. 2019; Drennan 2009;
Thomas 1986) and calculate the probability that a value equal to or
more extreme than the test statistic can occur under the
assumption of the null hypothesis.
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The probability of the test statistic, or p-value, is often calculated
with the help of probability distribution models, like the normal
distribution. These probability models are also known as “likeli-
hood functions.” The “likelihood” is a statistical function that
describes the probability of the test statistic dependent on the
hypothesized parameter values—for example, those assumed by
the null hypothesis. For instance, as we show in the fictitious
example below, the normal likelihood function is used to compute
the p-value of a z-ratio test statistic, assuming the null hypothesis
is true. Using similar probability models, archaeologists conduct
NHST and calculate quantities such as p-values and confidence
intervals (Cls) to evaluate whether the test statistic rejects or fails to
reject the null hypothesis.

Cls are grounded in the CLT's null distribution concept. Ar-
chaeologists often compute Cls in two contexts: (1) to conduct
NHST, they calculate the Cls of a test statistic; and (2) to estimate
the precision of a parameter estimate, they compute the Cls of a
sample statistic. Generally, the Cls of either the test or sample
statistic are centered on their mean, represent their respective null
distribution, and are derived using their sample’s standard error.
Recall that the standard error of either statistic is the standard
deviation of its null distribution. For the sample statistic, this dis-
tribution represents the range of plausible values within which one
may find the true value of the population parameters.

In the context of the test statistic, however, the Cl is the range of
possible values within which the true difference, assumed by the
null hypothesis, will be found. In other words, due to the CLT,
approximately 68% of the test statistic’s null distribution will cap-
ture the true value of the difference, assumed to be 0 by the null
hypothesis. Likewise, in the case of a sample statistic, 68% of its
null distribution will contain the true value of the population pa-
rameter. Alternatively, one may wish less uncertainty than é8% for
the sample or test statistic. In this case, one may compute ranges
similar to the standard error that capture the true parameter or
difference values 95%-99% of the time—again, after theoretically
repeated sampling. These ranges are the Cls, and we refer to
them in terms of their percentage—for example, as 95% or 99%
Cls. In the context of NHST, archaeologists use the Cls of the test
statistic to reject or fail to reject a null hypothesis. If the value of no
difference, 0, is within the test statistic’s Cl, then the null hypoth-
esis fails to be rejected. However, if 0 is not within the test statis-
tic's Cl range, the null hypothesis is not supported by the data and
is rejected in favor of the alternative. We offer one last note about
the mechanics of Cls. It may seem tempting to interpret the 95%
Cl as indicating that the true population parameter or difference
has a 0.95 probability of being in the Cl. Although somewhat
confusing, however, the correct interpretation of the Cl is that,
based on repeated sampling over the long term, 95% of the Cls
will contain the true population parameter or difference.

In addition to Cls, NHST uses p-values as an empirical signal of
the plausibility of the test statistic, assuming the null hypothesis is
true. Archaeologists compute p-values by calculating the pro-
portion of values in the null distribution equal to and more
extreme than the sample’s test statistic. Typically, test statistic
values with a p-value less than or equal to a proportion of 0.05 (1
out 20, or 5%) are considered extreme. Archaeologists commonly
judge whether to reject or fail to reject the null hypothesis using a
p-value of 0.05 as a cutoff for rejection: the more extreme the
data, the smaller the p-value.
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The broader scientific community has become increasingly critical
of NHST (e.g., Gelman 2006, 2018; Vidgen and Yasseri 2016).
Statisticians and practitioners have strongly pointed out the arbi-
trariness of the 0.05 p-value threshold for statistical significance
(Cowgill 1977:352; Valeggia and Ferndndez-Duque 2022; Wasser-
stein et al. 2019). Some argue that inadequate statistical training
may lead researchers to misunderstand p-values (Hubbard
2011:2624; McShane and Gal 2015). One consequence of not fully
understanding the concept of p-values, for instance, is that some
researchers confuse practical significance, or relevance, with sta-
tistical significance. In particular, it is possible for effects that are
practically negligible, irrelevant, or uninteresting to result in small
p-values (e.g., Aarts et al. 2012; Johnson 1999; Kramer et al. 2016;
McCall 2018:90-93; Wolverton et al. 2016). In one case, while
investigating the effects of sibling competition on the growth
patterns of Maya children, Kramer and colleagues (2016) found
that the effects of family size on child growth were statistically
significant but "of little consequence to early childhood health or
fitness.” Here, interpreting the 0.05 p-value cutoff as demo-
graphically important would have led to incorrect conclusions.

In other cases, researchers have confused p-values for the Type-|
error rate, a. The p-value is the probability that the test statistic
may occur under the null hypothesis; a is the probability of
rejecting the null hypothesis when it is true (Hubbard 2011).
Historically, these two statistical quantities belong to competing
NHST philosophies (Fisher 1925; Neyman and Pearson 1933).
Neyman and Pearson developed the concept of Type-l error in
the context of designing infinitely repeatable experiments,
wherein o defines the probability that an analysis will fail to find a
difference between two hypotheses when there is a genuine dif-
ference. Fisher's p-value, by contrast, empirically estimates if a
specific set of observations fit a specified null hypothesis. These
two quantities have completely different theoretical underpin-
nings and relationships to actual observations. For example, a is
unrelated to observations, and the p-value is not influenced by the
alternative hypotheses under consideration. Typical NHST prac-
tice, unfortunately, can lead researchers to directly associate the
two concepts, complicating efforts to provide reasonable defini-
tions and interpretations (Hubbard and Bayarri 2003). The misuse of
p-values and statistical significance, due to either misunderstanding
(e.g., Thiese et al. 2015) or intention (Chuard et al. 2019; Head et al.
2015), can lead to the so-called scientific replication crisis (loannidis
2005), which is beginning to reach archaeological science (Bayliss
and Marshall 2019; Marwick 2017; McPherron et al. 2021).

Even accounting for these nuances, the interpretation of NHST
concepts such as p-values, statistical significance, hypothesis
testing, and Cls is not entirely straightforward. Statements about
sample statistics—standard errors and Cls—are based on hypo-
thetical repeated sampling, which is difficult to conceive of in
nonexperimental situations or—as in archaeology—where true
replication is hard or even impossible to achieve. In terms of
evaluation, although most researchers might generally understand
how to interpret a significant p-value in the context of rejecting a
null hypothesis, the meaning of a nonsignificant p-value may
cause confusion. This confusion might be exacerbated by the fact
that there is no mechanism for "accepting” or “verifying” a null
hypothesis. This critical misunderstanding of NHST may lead
some to interpret a nonsignificant p-value as accepting their null
hypothesis rather than failing to reject it (Greenland et al. 2016).
However, knowledge production in the NHST paradigm is
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centered on rejecting null hypotheses rather than accepting the
null or alternative hypotheses. To be fair, the NHST language is
confusing. For example, stating that a null hypothesis failed to be
rejected is a triple negative, meaning that “the hypothesis of no
difference was not not accepted.” Such convoluted language
embedded in NHST obfuscates the relationship between the
p-value, the null hypothesis, and the alternative hypotheses.

Moreover, the role of the alternative hypothesis and its connection
to the p-value is also unclear and often incorrectly interpreted
(Benjamin and Berger 2019; Cohen 1994). As a result, inference
using traditional NHST statistics can be difficult, especially when a
study wishes to discern among multiple working hypotheses (e.g.,
Chamberlin 1965 [1890]; Gelman et al. 2012), for example, when
two or more hypotheses fail to be rejected. In theory, such
hypotheses are consistent with the data. However, ranking mul-
tiple unrejected null hypotheses is difficult, if not impossible. One
way to rank them may be to use the hypotheses’ p-values. After all,
the p-value is a continuous metric mediating hypothesis rejection
and failure to reject. However, statisticians discourage this pro-
cedure (Hubbard and Lindsay 2008; McShane et al. 2019) because
the magnitude of the p-value does not reflect the weight of evi-
dence of one hypothesis over another. Consequently, traditional
NHST does not offer a straightforward procedure for further
comparing “unrejected” null hypotheses.

BAYESIAN STATISTICS

Bayesian inference offers an alternative approach with several
advantages over NHST. First, Bayesian statistics enables scientists
to use data to assign probabilities to their parameter estimates
and hypotheses, facilitating a more straightforward comparison of
competing hypotheses. Second, whereas NHST uses only new
data to make inferences, a Bayesian framework allows both new
data and existing information to be combined. As we detail below,
this characteristic more closely resembles scientists’ decision-
making processes and is likely one of the key reasons that scien-
tists, including anthropologists and archaeologists, are increas-
ingly adopting Bayesian inference to evaluate their hypotheses.

Bayes's theorem derives its name from the Reverend Thomas
Bayes (1763), an English Presbyterian minister and mathematician
who researched problems in probability that involved conditional
and prior probabilities (defined below). However, it was not until
the late 1900s that the Bayesian approach to statistical inference
was popularized in science (Bellhouse 2004). Although archaeol-
ogists notably began adopting Bayesian statistics to assess
hypotheses in the 1990s (e.g., Buck et al. 1996; Cowgill 1993),
earlier applications can be found scattered throughout the ar-
chaeological literature beginning in the 1970s (Doran et al. 1975;
Fisher 1987; Freeman 1976; Salmon 1982:51-55; Thomas 1986).
Today, scientists, including anthropologists and archaeologists
who find this approach advantageous, are increasingly applying
Bayesian statistics to evaluate their hypotheses with data (Gelman
et al. 2020; McElreath 2020; Naylor and Smith 1988;
Otérola-Castillo and Torquato 2018).

One advantage of Bayesian inference is that it enables expert, or
“prior,” information about hypotheses to be incorporated into
statistical analyses. As we show in our example below, the prior
knowledge of an archaeologist or collection of archaeologists and
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other experts can be very valuable because “we depend very
much on prior information to help us in evaluating the degree of
plausibility in a new problem” (Jaynes 2003:6). Formally including
previous experience or expert information into statistical analyses
to "update” one's state of knowledge is a natural learing process
and improves the inferences made by NHST (Cowgill 2001). To
accomplish this, practitioners of Bayesian inference convert prior
knowledge into “prior probabilities” and use them and their dis-
tributions as part of statistical analyses. Once analysts determine
their prior probability distributions, as with NHST, they can
observe new data to test their hypothesis (or hypotheses). In this
context, the likelihood of the data is combined with (or weighted
by) the prior to give the Bayesian “posterior probability.” The
posterior is the probability of the hypothesis given the observed
data’s likelihood and prior knowledge (Buck et al. 1996). As we
discuss in more detail below, the Bayesian process is particularly
helpful in situations where only small amounts of data are
obtained, as is often the case in archaeology.

In simple cases, determining the posterior and its distribution is
relatively straightforward. However, the calculus underlying more
complex cases is impossible to solve without the application of
novel simulation methods. In particular, the Markov Chain Monte
Carlo (MCMC) algorithms have facilitated progress in Bayesian
analyses. MCMC simulation is a combination of Monte Carlo
sampling and Markov Chains. Monte Carlo sampling is used to
estimate difficult-to-compute quantities from the unknown distri-
bution of an observed random variable. Markov Chains are a
stochastic series of events associated with one another, where the
probability of a new event is dependent only on the state of the
last event. Together, these characteristics of Monte Carlo sam-
pling and Markov Chains are essential to find the posterior
probability distribution of complex problems. Today, variations on
the original MCMC algorithm (Metropolis et al. 1953)—such as the
Metropolis-Hastings, Gibbs, Hamiltonian, and other methods—
are now in widespread use, facilitating broad application of the
Bayesian paradigm (e.g., Dunson and Johndrow 2020; Gilks et al.
1996; Howson and Urbach 2006:xi; Robert and Casella 2011).

To further contextualize the application of Bayesian statistics, we
provide a fictional example that illustrates how one can use this
probabilistic framework to solve an idealized archaeological
research problem. To do this, we choose to use a parable’ rather
than a real case study in order to avoid the complexities of site
formation processes and sampling bias. The contrived, fictional
example in this parable also helps focus attention on specific
aspects of Bayesian inference, which we feel are most instructive.
The parable of the “Monico Culture and the Bayesian Ar-
chaeologist” demonstrates how inferences can be made using
data and prior information about a hypothesis, how to evaluate
the uncertainty surrounding a hypothesis, why this approach
seems less ambiguous than NHST, and consequently, why it is
becoming increasingly popular.

THE MONICO CULTURE: A
SIMPLIFIED APPLICATION OF
BAYESIAN STATISTICS

The “Monico culture” is a fictitious group of people who might
have lived between the ethnographic present and long ago across
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FIGURE 1. A reconstruction of the fictitious Monico archaeological culture, from the Monico-1 site (see text below).

multiple environmental settings and sociocultural contexts
worldwide. The imaginary archaeological record of the Monico is
well known. In general, their material culture reflects patterns of
foraging, farming, and pastoralist economies. Monico sociocul-
tural dynamics are broad. They range from egalitarian practices
exhibited at highly mobile camps to a greater social complexity
derived from more permanent settlements. Some Monico experts
argue that later Monico settlements show evidence of intensive
food production, trade of exotic goods, and a highly centralized
political organization administered by an increasingly hierarchical
elite (Figure 1).

A famous Bayesian archaeologist, an authority on the Monico, has
excavated a postcontact period site associated with this culture.
Excavation work at the site, named Monico-1, has yielded an
impressive faunal assemblage among the widely diverse material
culture. The archaeofauna is composed of two species of animals:
“dog” and “coyote.” Individual animals of both species are
represented by complete skeletons. Consequently, in this report,
the archaeologist uses the term “individual” to refer to complete
dogs or coyotes. Likewise, when mentioning “the number of”
dogs or coyotes, the archaeologist means a count of complete
individuals of the respective species. So far, the archaeologist has
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identified 100 such individuals and assigned them to their
respective species. Based on the observations, the assemblage is
composed of 71 dogs and 29 coyotes (Figure 2).

However, the archaeologist has also excavated a bone fragment
that is difficult to identify. The archaeologist wishes to know the
most probable species to which this fragment belongs.

The archaeologist defines “probability” as the relative frequency or
proportion of times that an event occurs. On the basis of the data
alone, the probability, P, of dog remains in the assemblage is

P(Dog) = % =0.71,

whereas the probability of coyote remains is

P(Coyote) = % =0.29.

Given these probabilities, it is reasonable for the archaeologist to

believe that the unidentifiable bone specimen is more likely to be
from a dog. However, the archaeologist is skeptical. Moreover, as a

| A Journal of the Society for American Archaeology
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FIGURE 2. The Bayesian Archaeologist and crew excavate the Monico-1 site.

Monico scholar, the archaeologist has ethnographic details about
the Monico people’s behavior, particularly regarding their eating
taboos. Historical accounts reveal that the Monico once main-
tained hunting dogs in their villages to hunt coyotes. Because the
Monico's traditional subsistence base depended on coyote hunt-
ing, dogs developed special relationships with their owners.
Consequently, the Monico came to treat their dogs respectfully, as
they would other people.

Oral histories passed down over generations have documented
that dogs were thought to be a close sibling of people. Notably,
the Monico culture is known to have had taboos against killing or
eating dogs. However, oral histories have also revealed that the
Monico did eat dogs during times of severe food scarcity. With
this additional or “prior” information, the archaeologist decides
to observe the skeletons more closely to check for the presence
of butchery marks (i.e., cut marks) on the dog remains. The
archaeologist tabulates this additional information on the
recovered bones under two butchery conditions: (1) butchery
marks are present, and (2) butchery marks are absent. Table 1
shows the frequencies of butchery marks on the skeletons of
each species.

To convert these data into a probability table, the archaeologist
standardizes (or divides) all of the values by the total number of
observations (100 in this case). The inner cells (dark font, light
shading) in Table 2 provide the probabilities of butchery marks
and species occurring together, or jointly, which are therefore
known as “joint probabilities.”
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The values in the right and bottom margins of Table 2 are suitably
named “marginal probabilities.” These represent the presence
and absence of butchery marks (on the right) and the species
identified (bottom). The marginal totals are the total probabilities
of each subsetted space (species or butchery mark). By definition,
all probabilities lie in the range of 0 to 1, and the total sum of the
marginal rows or columns (i.e., the sum over all marginal out-
comes) must be 1.

At this point, the archaeologist focuses on the unidentifiable bone
specimen and finds several butchery marks on it. The archaeolo-
gist can use this additional information to gain an inferential
advantage by accounting for, or conditioning on, the presence of
butchery marks—a process called “conditioning.” The archae-
ologist conditions the species identified on the presence or
absence of butchery marks. This procedure is otherwise known as
subsetting or stratifying the variable “species identified” by the
presence or absence of butchery marks.

Naturally, the archaeologist asks, “What is the probability that the
unidentifiable bone specimen is from a dog compared to the
probability that it is from a coyote, given that butchery marks are
present on the bones of the individual?” The archaeologist
observed 32 animals from Monico-1 with butchery marks present.
Of those, butchery marks were present on nine dogs and 23
coyotes. The archaeologist can therefore calculate the probabil-
ities of the individual belonging to one species or the other, given
that butchery marks are present (statisticians use the “|” symbol to
mean "given that” and to signify that conditioning is taking place).
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TABLE 1. Frequencies of Individual Animals and Observed
Butchery Marks at Monico-1.

TABLE 2. Joint Probabilities of Individual Animals and
Observed Butchery Marks.

Individuals of
Each Species

Total

Dog Coyote Butchery Marks
Butchery  Present 9 23
Marks  Absent 62 6

Total Individuals Total = 100

Note: Although most of the butchery marks are on coyote bones, nine of the 71
dog bones also show signs of butchery.

For a dog, the probability is

P(Dog | Butchery mark present) = 312 =0.28,
whereas the probability that an individual with butchery marks
belongs to the coyote species is

23
P(Coyote | Butchery mark present) = o= 0.72.
Therefore, after observing butchery marks on the individual
(unidentified) bone, the archaeologist can state that the prob-
ability is 0.72 that it came from a coyote. In other words, the
archaeologist is 72% certain that the bone came from a coyote.

A few days later, a local newspaper reporter became aware of an
ongoing archaeological excavation at another Monico village site
nearby, named Monico-2. Sources reveal to the reporter that the
excavators there are also recovering faunal remains. Because the
archaeologist is a well-known expert on the Monico's eating
habits, the reporter contacts the archaeologist and communicates
the fact that the new faunal assemblage at Monico-2 is wholly
composed of remains from dog species.

Even though the investigators at Monico-2 have not yet conducted
a thorough faunal analysis, the reporter asks the archaeologist how
likely it is that the Monico were butchering and eating dogs at the
new site. By now, the archaeologist has estimated the probabilities
of finding butchery marks associated with each animal species
based on experience at the Monico-1 village. To make a prob-
abilistic inference about behavior at the new site, the archaeologist
conditions on the "“species identified” instead of on the "presence
of butchery marks.” Out of the 71 dogs identified at Monico-1, the
archaeologist observed nine with butchery marks and 62 without.
This means that, based on the evidence from Monico-1, the
probability of finding evidence of butchery on dogs is

P(Butchery mark present|Dog) = % =0.13,
whereas the probability of no butchery evidence on dogs is
62
P(Butchery mark absent|Dog) = 7= 0.87.

After a moment's thought, the archaeologist tells the reporter that
(based on knowledge from Monico-1) the probability of the dog

November 2022 |

https://doi.org/10.1017/aap.2022.10 Published online by Cambridge University Press

Advances in Archaeological Practice |

Individuals of
Each Species

P P
(Dog) (Coyote)

Marginal
Butchery Marks

Butchery P(Present) 0.09 0.23
Marks P(Absent) 0.62  0.06
Marginal 0.71 0.29 Total =1
Species

Note: These describe the probability of identifying a species and observing
butchery marks on the bones of that species; for example, P(Coyote and
Butchery mark present) is 0.23, or 23%.

bones from Monico-2 having resulted from dietary activities is
relatively low, at around 13%. This calculation draws on Bayes's
theorem, as well as on the information regarding the Monico's
relationship with their dogs and the butchery practices at
Monico-1.

Bayes's theorem is the algebraic formalization of the probabilistic
table work that we conducted in the previous section using a
discrete event. The theorem is most useful when a conditional
probability statement is known, and one wishes to obtain its
inverse conditional statement. For example, from the previous
model, we know that P(Butchery mark present | Dog) = 0.13. If we
wish to know the inverse conditional statement—P(Dog | Butchery
mark present)}—we can calculate it using

P(Dog | Butchery mark present)

_ P(Butchery mark present | Dog) x P(Dog)
- P(Butchery mark present) ’

Tables 1 and 2 provide the necessary values to plug into this

expression so that
0.09

03 =0.28.

P(Dog | Butchery mark present;

When generalized, the algorithm applied here is known as Bayes's
theorem. It is usually exemplified by considering two related
events: A and B. Simply put, Bayes's theorem states that

P(BIA) x P(A)

P(A|B) = — PE

In this case, to obtain the conditional probability of A given B,
P(A|B), one needs to divide the joint probability of A and B,

P(A and B), by the marginal probability of B, P(B). The product of
P(BJA) and P(A) is the joint probability, P(A and B). The formula
then generalizes to

P(AIB) =P(A%gf’8),
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TABLE 3. Frequencies of Individual Animals and Observed
Butchery Marks from the Monico-2 Village.

TABLE 4. Joint Probabilities of Individual Animals and
Observed Butchery Marks from the Monico-2 Village.

Individuals of
Each Species

Total
Dog Coyote Butchery Marks
Butchery  Present 9 1
Mark Absent 1 0

Total Individuals Total =11

Individuals of Each

Species
Marginal
P(Dog) P(Coyote) Butchery Marks
Butchery P(Present) 0.82 0.09
Mark  p(Absent) 0.09 0.00

Total =1

Marginal Species A 0.09

Note: Observe the small total number of individuals and the particularly tiny
sample of coyote individuals.

where the joint probability is divided by the marginal P(B).
Statisticians call P(A|B) the posterior probability of A given B;
P(B|A), the inverse conditional (or likelihood) of B given A; and
P(A), the prior probability of A.

After a few days, the reporter acquires more information from the
continued excavations at the Monico-2 village. The frequencies
and joint probabilities are described in Tables 3 and 4. The
reporter is quite excited to inform the archaeologist that excava-
tors had recovered 10 dogs, all but one of which had butchery
marks on them. By contrast, the archaeologists at the Monico-2
site had recovered only one coyote that exhibited butchery marks
on the remains. The researchers at Monico-2 used an appropriate
NHST test statistic, the one-sided ztest for proportions (Diez et al.
2019:194-197), with continuity correction, to test whether the
observed dog butchery rate (9/10) was statistically significantly
greater than 50%—the default null hypothesis in this test. The
Monico-2 archaeologists rejected the null hypothesis with a
p-value <0.05 (z-ratio =2.21, mean =5, sdev = 1.58, p=0.013).
Because of the small sample size, they also conducted a one-
sided binomial test, which yielded results in line with the z-test
results (successes = 9, trials = 10, p = 0.01074). Based on these
statistically significant results, the Monico-2 archaeologists told the
reporter that the majority of dogs were butchered at the site.
Moreover, according to the reporter, the archaeologists also
suggested that the evidence and results of the statistical analysis
indicated that the people at the Monico-2 village included dogs
as an important part of their diet. In light of this evidence, the
reporter begins to question the ethnographic record on the
dietary taboos of the Monico.

The archaeologist at Monico-1 has a quick look at the tables, does
a few calculations, and maintains that the probability of the
Monico-2 villagers having butchered their dogs is now even lower,
especially compared to the new probability of coyote butchery,
which is slightly higher. The archaeologist insists on waiting for a
larger sample before drawing firm conclusions, however. In-
credulous, the reporter asks for an explanation as to why the
archaeologist questions the significant null hypothesis tests con-
ducted by the Monico-2 archaeologists. The archaeologist looks
at the reporter and says, “Well, NHST procedures like the z-test
only consider new data. These methods, unfortunately, do not
account for all available information, new and prior, about Monico
subsistence. Personally,” the archaeologist continues, “I try not to
form my opinions based solely on new data. Rather, | use new data
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Note: Observe the larger proportion of dog bones with butchery marks
compared to the sample from Monico-1.

to update my existing opinions made using prior knowledge, for
example, from the Monico-1 site.” The archaeologist then walks
the reporter through the tables and begins to explain how they do
their inference using Bayes's theorem.

The archaeologist explains that the posterior probabilities of dog
and coyote butchery drawn from the (much larger) Monico-1
faunal assemblage have become new “prior” information on the
probabilities that Monico villagers butchered dogs and coyotes.
These quantities can be represented by

P(Butchery mark present | Dog)monico-1 = % =0.13
and
23
P(Butchery mark present | Coyote)yonico-1 = 50 = 0.79.

The archaeologist’s knowledge about the degree to which the
Monico-1 villagers butchered dogs and coyotes can be updated
in a new iteration of Bayes's theorem that includes the data from
Monico-2. To account for the archaeological context from which
the calculations derive, the archaeologist adds the subscripts
Monico-1 and Monico-2 to the equation terms, as follows:

P(Butchery mark present | Dog)umonico—2

_ P(Dog| Butchery)yonico-2 X P(Dog| Butchery)
N P(Dog)

Monico-1

Monico-2

0.82 x 0.13

_ 091 _
=9 0.13.

Adding in the dog data from Monico-2 causes the probability of
dog butchery to decrease slightly (from 0.127 to 0.126 but
rounded to 0.13). The same operation can be conducted using the
prior from the first excavation and the new coyote data:

P(Butchery mark present | Coyote)yonico-2

P(Coyote | Butchery)yonicos X P(Coyote | Butchery)

P(Coyote)

Monico-1

Monico-2

w x 0.79

_ 0N —
= 0.09 =0.87.
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In this case, after updating the data, the new posterior probability
of coyote butchery is also higher (changing even more from the
prior probability than in the case of dogs). The archaeologist
explains this to the reporter. Furthermore, the archaeologist urges
caution given that the data and resulting probabilities from the
original site were derived from a sample of 100 individuals,
whereas the current selection represents a total of only 11.
Although the probability calculations are correct, it would be
prudent to wait for more data, given that the excavation at
Monico-2 is ongoing. However, the archaeologist’s Bayesian
analysis suggests that, at this point, we should not expect butchery
marks on any newly discovered dogs at the Monico-2 site.

LINKING BAYES'S THEOREM TO
DATA AND HYPOTHESES

The Monico case study provides a tangible example of the dif-
ferent components of a Bayesian analysis, including estimating an
event's probability and the probability of one event given another
(using currently available data), along with the key concepts of
likelihood, prior and posterior probabilities, and how to update
one's knowledge using the previous Bayesian posterior as the new
prior. Although the procedure exemplified here is specific to
archaeological count data, Bayes's theorem is very general and
can be useful for a wide variety of data and data-generating pro-
cesses. This section generalizes Bayes's theorem to a variety of
other scientific scenarios.

We stated earlier that Bayesian scientists use the data in hand (D)
to assign probabilities to statements or hypotheses (H) about a
population. The statement P(H|D)—that is, the probability of the
hypothesis given the data—formalizes this relationship. In our
example of the Monico sites, the archaeologist was trying to cal-
culate the probability that the Monico people butchered dogs
and coyotes (the hypotheses) given the number of cut marks on
their bones (the data in hand). To operationalize this statement in
the context of data and hypotheses, Bayes's theorem functions as
follows:

P(DIH) x P(H)
P(HID) = ~PD
where P(H|D) is the posterior probability of the hypothesis given
the data, P(D|H) is the probability of the data given the hypothesis
(or the likelihood) of the observed data, P(H) is the prior prob-
ability of the hypothesis (before the data were collected), and P(D)
is the probability of the data in hand (out of all possible values of
the data). Alternatively, generalizing and using more modern
statistical vernacular, this operation can be expressed as

Likelihood x Prior

Posterior = P(Data)

In this manner, Bayesian statistics offers an alternative statistical
framework for updating and evaluating hypotheses through a
mechanism that obtains a posteriori information about the
posterior of interest based on the data, a statistical model
(expressed as a likelihood), and appropriately formulated prior
information. In other words, with an explicit statement of our prior
information, a clearly defined statistical model, and a desire to
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update our understanding, Bayes’s theorem provides us with a
probabilistic framework for making interpretations.

In addition to the coherent and explicit nature of the framework,
there is another attractive feature of the Bayesian paradigm—
namely, that it allows us to learn from experience. Priors enable
the explicit contextualization of previous knowledge or beliefs
about the topic under investigation (Buck et al. 1996; Cowgill
1993). Using previous knowledge should be a natural tendency for
archaeologists. As Buck and colleagues (1996) discuss, archaeol-
ogists apply previous knowledge often, for example, when infer-
ring the function of newly discovered artifacts by using their
association to artifacts and features that have already been dis-
covered. Similarly, the archaeologist in our example was able to
contextualize the data from the Monico-2 site based on Monico-1
observations. Few other interpretive frameworks offer a clear
structure for updating beliefs in light of new information, and yet
this is such an important part of most intuitive approaches to
learning about the world in which we live. Moreover, today's
posterior information (based on current data and prior informa-
tion) is in a suitable form to become the prior for further work if
and when more data become available.

Thus far, the example has shown how Bayesian inference can be
applied to hypotheses defined by statements about discrete
events. In the fictitious example above, the hypotheses were
represented by statements about whether the observed faunal
remains were the result of butchery. The observed data assigned
probabilities to each hypothesis, thereby indicating the amount or
degree of belief in the hypothesis. These data were discrete
events from only two sites. Yet, in reality, although the population
of the proportion of butchered dog bones is the outcome of the
same behavioral process (butchery), the observed values are likely
to vary from site to site.

Consequently, many archaeologists might wish to compare their
single-site data to the universe of known sites. In this case, the
hypotheses to be evaluated are characterized by the values of a
probability model’s parameters. Although we mentioned this
earlier, at this point, it is worth recalling that such parameters
describe certain characteristics of a sample or population. For
archaeologists, the most common parameters are those that
measure central tendency, such as the mean or median.
Bayesian inference can be conducted using other parameters, as
well as the full distribution of the posterior, data and prior
information. These are usually represented by probability mod-
els. Likely the most well-known such model is the normal prob-
ability model, in which the probability distribution has a
symmetrical, bell shape around a single mean value. When
(sample) data and associated models of probability are involved,
it is conventional to use the Roman symbol x to represent the
observed (or sample) data, and the Greek symbol 6 (theta) to
represent the parameter (or multiple set of parameters) of the
model of the population that we are trying to learn about. Given
x and a model with parameter(s) 6, we can re-couch Bayes's
theorem and its three components—the “likelihood,” the
“prior,” and the “posterior”—in the context of data distribu-
tions and their probability models.
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The “likelihood” is a statistical function, or a mathematical
expression, that associates individual data quantities with their
respective probability values. Its form is determined by the spe-
cific probability model being used, but in general terms, it is
represented by P(x|6)—that is, the probability distribution of newly
observed data conditioned on the parameter(s). Consequently,
the “likelihood” is the probability of observing particular data
values given some specific (or hypothesized) values of the
unknown parameters. Therefore, this is a formal statement of the
relationship between the parameters about which we want to
learn and the data we collect.

The “prior” is also a function and can be represented by P(@). It is
a statement of what we know about the probability distribution of
the parameter(s) before new data are collected. In simple terms,
we can think of this as the probability we attach to observing
specified values of the unknown parameters based on what we
knew before we observed the data. This is a formal statement of
our knowledge prior to collecting the latest data.

The “posterior” is what we want to obtain: a combination of the
information contained in the new data, the likelihood, and the
prior. The posterior is represented by P(@|x). As presented in the
previous section, this is the probability of the hypothesis given the
data, or P(H|D). It is the probability distribution of the model’s
parameter(s) conditioned on the data. In simple terms, we can
think of this as the probability we attach to specified or hypo-
thetical values of the unknown parameters after observing new
data. In this context, we can express Bayes's theorem as

P(O1X) = P(xlOI)D(;; P(G)_

As described above, the Bayesian inference about Monico-2 given
to the reporter was based only on the new Monico-2 data and the
archaeologist’s prior expert experience with Monico-1. However, if
the archaeologist wants to give the reporter the best possible
estimate, they could use all available evidence, including the
Monico-2 data, their expert knowledge, and information from
other archaeological sites. To do this, the archaeologist reviews
the published literature and identifies additional information on
the proportion of dogs with butchery marks recovered from 38
previously excavated Monico sites. The archaeologist then seeks
to investigate the variability of dog butchery behavior as evi-
denced by the proportion of dogs with butchery marks at each
Monico site, with a view to obtaining a probabilistic prior state-
ment about the theta parameter, 6 (the proportion of dogs with
butchery marks).

Table 5 illustrates the distribution of 6 values across the frequency
and proportions of sites. The table shows that out of the 38 sites,
20 reported having between 0% and 5% of dogs showing evi-
dence of butchery marks. Twelve sites have between 6% and 15%
of dogs showing evidence of butchery marks, whereas another
four sites report values for 8 between 16% and 35%. Meanwhile,
another two archaeological sites report that 8 ranges from 36% to
75%. There are no sites with more than 75% of dog remains
showing evidence of butchery.
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TABLE 5. Frequency Distribution of the Number of Sites with

Reported Proportions of Dog Remains with Butchery Marks (6)

and the Proportion of the Total Number of Sites with Butchery
Marks on Dog Bones (Prior Probabilities).

Proportion of Total

Proportion of Dog Number of Number of Sites with
Remains with Sites with Reported 6 (Prior
Butchery Marks () Reported 6 Probability)
0.00-0.05 20 0.53
0.06-0.15 12 0.32
0.16-0.25 3 0.08
0.26-0.35 1 0.03
0.36-0.45 1 0.03
0.46-0.55 0 0.00
0.56-0.65 0 0.00
0.66-0.75 1 0.03
0.76-0.85 0 0.00
0.86-0.95 0 0.00
0.96-1.00 0 0.00

Total 38 1.00

To begin, the archaeologist speaks with other experts about
nutrition, the archaeology of food, and Monico archaeology and
ethnography. Based on personal scientific knowledge, the
archaeologist hypothesizes that to consider dogs as having made
a substantial food contribution at a Monico site, there would need
to be evidence of butchery marks on at least 50% of individual
dogs. “So,” the archaeologist thinks, “my first hypothesis, Hy, is
that the value of 6 should be at least 50%, or 0.5, for any specific
Monico site. What is the probability of this hypothesis being cor-
rect for Monico-2 based on the data | have and my prior
knowledge?”

The Monico-2 site sample indicated that, out of 10 individual
dogs, nine had butchery marks on them (so, 6 =0.9). The
archaeologist wants to use prior knowledge, including the infor-
mation from the literature review, to understand the variability of 6
at Monico village sites.

The archaeologist first records the dog butchery proportions (6)
from the 38 sites found in the literature. To summarize these data,
in Table 5 (column 1), the archaeologist groups the 8 values into
equal intervals in increments of 0.10 (10%, except the first interval,
which is smaller). They also record the number of sites reporting 6
values in each interval (column 2) and then calculates the prior
probability of each 6 interval by dividing the number in each cell
of column 2 of Table 5 by the total number of sites (i.e., 38). In this
way, the third column of Table 5 reports the proportion of sites
within each 6 interval. This frequency distribution also serves as
the prior distribution of 6 values.

The archaeologist then plots the distribution of the proportion of dogs
butchered at Monico sites (Table 5) in order to visualize the resulting

prior knowledge that can be derived from this dataset (Figure 3).

Recall that, in the Bayesian framework, one needs the likelihood
(P(x|6)), the probability of the data (P(x)), and the prior probability
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FIGURE 3. Simple representation of the distribution of the archaeologist’s prior probabilities of the estimates of 6, the proportion
of dogs with butchery marks at Monico archaeological sites (from Table 5). Note that small values of 8 have a higher prior

probability than larger ones.

of the hypothesis (P(6)) to compute the posterior probability of the
hypothesis that 8> 0.50, given the data (P(6>0.5|x)). Figure 3
illustrates the prior probability, P(8), for different 6 values.

Note that in contrast to the single-event values in the previous
examples above, the components of Bayes's theorem in this case
are distributions of values. Applying Bayesian statistics in such
situations provides a particular advantage because the
framework enables archaeologists to evaluate the probability of a
hypothesis and the associated uncertainty. Consequently, to
continue with the Bayesian analysis of the Monico-2 data in light
of the prior knowledge from the 38 sites (represented in

Figure 3), the archaeologist needs a model to represent the
probability of the data, x, and associated parameter(s), 6, in
order to compute (1) the likelihood, P(x|6), and (2) the probability
of the data, P(x).

To compute the probability of the Monico-2 data given the
hypothesis, the archaeologist needs a function that can represent
the likelihood, P(x|8), of these data, x; given the parameter of
interest, 6. Archaeologists frequently employ a probability func-
tion termed the “binomial model” to calculate the likelihood of
data composed of binary observations—that is, observations
expressed as 1/0, yes/no, true/false, or present/absent. In this
case, the binomial model is appropriate for observations indicat-
ing the presence or absence of butchery marks on individual dog
skeletons, as in the Monico-2 data. For this reason, the archae-
ologist wants to compute the likelihood that nine out of 10 dog
skeletons from this site exhibited butchery marks on them.
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Mathematically, the binomial model is expressed by:

Pm@=<f>x¢xm—@MK

The symbols k and N represent the data: k is the number of dogs
observed with butchery marks, whereas N is the total dogs
observed. The model’s parameter, 6, in this example, represents
the proportion of dogs with butchery marks out of all dogs
observed at Monico-2.

The archaeologist uses the parameter estimation method called
“maximum likelihood” (ML) to determine the most likely value of 8
that would have generated the data. ML asks, under the binomial
model, which value of 8 is most likely to lead to the data observed.
In this case, the archaeologist’s binomial data are k=9 dogs with
butchery marks and N =10 total dogs. ML evaluates which value
of the 8 parameter maximizes P(x|6), the likelihood, over a sys-
tematic range of quantities between 0 and 1.

To estimate the most likely value of 6, the archaeologist assumes
that the probability of observing each butchered dog is inde-
pendent of the others, making the probability of observing nine
butchered dogs 6°. Conversely, the probability of observing a
single unbutchered dog is (1 — 8)1°~, and the probability of both
nine butchered dogs and one unbutchered dog occurring is 6”7 x
(1 -6)"? However, to compute the likelihood of the data, the
archaeologist also needs to account for the number of different
ways that the nine observations of dogs with butchery marks, k,
can occur in the sequence of 10 dog observations, N.

A Journal of the Society for American Archaeology


https://doi.org/10.1017/aap.2022.10

Likelihood Distribution of 6

0.44

0.31

0.21

Likelihood, P(x|6)

0.11

0.0 T T T 7
0.0 0.1 0.2 0.3 0.4

05 0.6 07 08 0.9 1.0

Proportion of Dogs with Butchery Marks at Monico Archaeological Sites (6)

FIGURE 4. Distribution of standardized likelihood values corresponding to variable quantities of 8 across the [0, 1] range. The
dashed black line indicates the value of 8 that maximizes the likelihood of the data. This is known as the ML estimate of 6.

The binomial model does this by computing (I,:I) known as the

“binomial coefficient” (read as “N choose k"). In this case, if
positive identifications of butchery marks on dogs are represented
by 1s and no butchery marks are Os, the binomial coefficient
computes how many unordered sets could have resulted in nine
1s and one 0: for example x=1{0,1,1,1,1,1,1,1,1,1},{1,1,1,1,0,
7,1,1,1,1,{1,1,1,1,1,1,1,1,1,0} ... etc? The binomial
coefficient is shorthand and may be calculated using the following

equation:
NY N!
k) 7kl x (N=Kk! -

where | is the factorial function that yields the product of an integer
and all the integers below it. In our case, N=10 and k=9, so:

NI'=10 x 9x8x7x6x5x4x3x2x1=23,628,800;
kl=9x8x7xbx5x4x3x2x1=362, 880;
and (N=—k!'=(10-9!' =11 =1.

Therefore,

3, 628, 800

NY N o 10
k) Tk x (NZR! 9 x (10-9) 362,880 x 1

Once ( I,:’) has been computed, the archaeologist may continue to
estimate the likelihood value of a given quantity of 8 by calculating:

Px|6) =10 x 6 x (1— %9
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across the range of 8 values from 0 to 1 to find the likelihood dis-

tribution of the data and, therefore, the value of 6 that maximizes

the likelihood function. This approach is illustrated in Figure 4, from
which the archaeologist learns that the ML estimate of 6 (given the
Monico-2 data) is 0.9; in other words, the observations at Monico-2
are most likely if the proportion of dogs butchered across Monico-2
(0) is also 0.9 (or 90%).

Much like using the binomial probability model to obtain the
likelihood distribution of the Monico-2 data, the archaeologist can
use another probability model to express P(6), the probability
distribution of 6, also known as the prior. In this case, the
archaeologist needs a probability function that models the distri-
bution of 6, the proportion of dogs with butchery marks, across
the 38 sites observed before the excavation of Monico-2. Stat-
isticians frequently use the beta probability function to model the
distribution of proportions such as 8. The mathematical expression
of the beta model is:

P(H) = P(6) = "' x (1— 6"

The shape of the beta model is therefore controlled by two
parameters, a and b, which in turn control key summary statistics
such as the model's mean and variance. Unlike with the likelihood
model, the archaeologist in this case wants to find a distribution of
0 that quantitatively describes their prior knowledge. To do this,
the beta parameters can be adjusted to fit the shape of the prior
data distribution in Figure 3. Through a visual best fit, the
archaeologist estimates that the values a= 1.5 and b =16 result in
a probability distribution that resembles that of the prior knowl-
edge about 0 (i.e., the shape shown in Figure 3). Consequently,

| November 2022


https://doi.org/10.1017/aap.2022.10

0.6

0.51

0.44

Prior, P(6)

0.21

0.11

L

0 T T T T '
0 0.05 0.15 0.25 0.35 0.45

0.55 0.65 0.75 0.85 095 1

Proportion of Dogs with Butchery Marks at Monico Archaeological Sites (6)

FIGURE 5. Standardized beta probability model, with parameters a= 1.5 and b =16, representing the archaeologist’s prior
probabilities depicted in Figure 3. Note the similarity to Figure 3 in terms of shape, and in particular, the location of the mode and

range of values.

the distribution of the probability,
P(H) = P(6) = 6> x (1— ",

across all 6 values between 0 and 1 is illustrated in Figure 5.

The archaeologist is aware that statisticians frequently use the bino-
mial and beta distributions in the context of Bayesian analyses
because they work well together for modeling the likelihood and
prior probability distributions, respectively, simplifying the calculations
needed to compute the posterior. Such convenient pairs of prob-
ability models are known as “conjugates.” As a result of the modeling
choices made, the archaeologist may algebraically combine the
binomial likelihood data with the parameters of the beta prior distri-
bution to produce a posterior beta distribution represented by:

P(HID) = P(0|x) = kikelinood +apior=1) o (1— 9)( Nikelirood —Kiikelhood +b prior—1)

P(6|x) = ¢@oHI5-1 (1 = 9)<wof 0+16—1).

They therefore generate values of P(x|6), which is the likelihood, and P
(6), which is the prior probabilities, to calculate P(@]x), which is the
posterior probability distribution, across a fine grid of 6 values in the
[0, 1] interval (1,000 values between 0 and 1). These are illustrated in
Figure 6.

The archaeologist then focuses on P(|x), the posterior distribu-

tion. The posterior will help them to make inferences about the
probability of 6 and its associated uncertainty (Figure 6). The
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archaeologist can visually represent the estimate of 6 (the
expected proportion of dogs with butchery marks at Monico-2,
based on the observed data and prior knowledge from the 38
other Monico archaeological sites) and the 90% uncertainty range
of its estimate with a graph in Figure 7.

Unlike the NHST framework, the Bayesian posterior probability
enables the archaeologist to assign probabilities to hypotheses
about parameter values. In this case, the hypothesis is that the
value of 6—the proportion of dogs butchered at Monico-2—is
greater than 0.5 (50%; Table é). The values shown in Table 6 are
inferences resulting from calculations made using the posterior
distribution. The archaeologist computed the probability that 6 is
greater than 0.5 (top-left value in the table), and the values of 8 at
the fifth, fiftieth, and ninety-fifth probability percentiles. Recall that
earlier, the archaeologist in conjunction with other scientists pro-
posed that cut marks would need to appear on at least 50% (or
0.5) of the dog remains at a Monico site in order to consider dogs
“an important food contribution.” However, Table 6 shows that
the value of 8 only has a 10% chance of being greater than 50%.
Therefore, the inference that dogs were a substantial part of the
Monico diet at Monico-2 is not highly probable. For example, the
archaeologist thinks, “If a meteorologist told me that there was a
10% chance of rain today, | would not carry an umbrella.”

Importantly, the uncertainty around the value of 8 can also be
expressed as a probability interval. In the Bayesian framework,
these probability intervals are known as the "highest probability
density intervals” (HPDIs), and they differ from NHST's Cls. One of
the most important differences is that the interpretation of the
HPDI is much more straightforward. The HPDI is the probability of
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FIGURE 6. Distributions of the archaeologist’s prior probabilities, the likelihood of the data, and the posterior probabilities. All
probability densities are standardized by a normalizing constant.

0.201

0.151

Posterior, P(8]x)
50th-percentile

0.05 1

|— 90% probabillity range —|

0.00 - T T T T T r -
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Proportion of Dogs with Butchery Marks at Monico Archaeological Sites (6)
FIGURE 7. Posterior probability distribution with the dotted vertical line showing the median (50th percentile) estimate (0.38). The
solid black line depicts the 90% probability density interval (0.23-0.53).

the parameter given the data, whereas, as we described earlier, the median, or fiftieth percentile, estimate of 6 is 0.38—meaning
the Cl is not a probability about the value of the parameter esti- that once the available prior information from the literature and
mate. In the case of 6, Figure 7 tells the archaeologist that there is the Monico-2 data are incorporated, it is most likely that the
quite a lot of uncertainty around the true value of 6. For example, Monico-2 occupants included dogs in their diet 38% of the time.
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TABLE 6. Inferences about 6 from the Posterior Probability
Distribution.

Values of 0 between the 5th and 95th

P(6 > 0.5) Percentiles

0.10 5% 50% 95%
0.24 0.38 0.54

However, the 90% HPDI spans 0.23 to 0.53 (23% to 53%), which
means that, based on our prior information and current data, there
is a 90% chance that 0 is between these values, and only a 10%
chance that it is larger or smaller than these limits. Although the
variation in @ reaches over 50%, it does so only slightly and, again,
it is not very probable. These results mean that the archaeologist is
very uncertain about the occupants’ proclivity to butcher dogs
(presumably) for dietary purposes at Monico-2, especially consid-
ering the small sample size and the fact that the current Monico-2
data differ quite markedly from those found at other sites.

CONCLUSION

Bayesian inference has advantages for archaeologists that extend
well beyond the realm of radiocarbon calibration and chrono-
logical modeling. The NHST framework has served archaeologists
well for many years, but it has limitations. Unfortunately, NHST
bases inference on new data alone due to its inherent structure. Its
language and assumptions can be convoluted and confusing, and
the approach cannot be used to compare multiple working
hypotheses directly. Bayesian inference overcomes many of these
problems for archaeologists. In many ways, archaeologists often
think through problems using a Bayesian framework without
knowing they are doing so and without using a formal probabilistic
framework. Like the Bayesian archaeologist in our parable, most
archaeologists do not form inferences about the past using new
data isolated from the existing body of knowledge. Instead, we
continually update our prior knowledge with new evidence to
make decisions, form opinions, and generate conclusions. The
advantage of Bayesian inference over NHST is that it affords
archaeologists (1) a more natural toolkit with which to learn from
data; (2) straightforward language to make hypotheses quantifi-
able, explicit, and transparent; and (3) the ability to use probability
for comparing multiple hypotheses and conducting further
evaluation.

Consequently, the Bayesian approach represents a paradigm shift
in archaeological inference. Bayesian statistics offers a coherent
inferential framework that explicitly outlines the way in which one's
prior information is updated with new data to produce the current
state of knowledge. The process helps to evaluate the degree to
which current and new evidence support hypotheses. This may be
conducted iteratively until there is a desirable amount of confi-
dence (or lack thereof) in the accuracy of a hypothesis. In this
context, the Bayesian framework resembles a learning process not
unlike scientific investigation. For example, archaeologists con-
tinually update their knowledge and degree of belief in hypoth-
eses using new information gathered through multiple data
collection methods, including excavation, survey, experimental,
laboratory, and other analytical activities.
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An increasing number of archaeologists are using Bayesian sta-
tistics to calibrate radiocarbon dates, build chronologies, and
evaluate their hypotheses about the past. The popularity of
chronology-related Bayesian software has made Bayesian infer-
ence in that context a simple operation—meaning that most users
will find the software easy to operate without a basic under-
standing of the logic of Bayesian inference and its three funda-
mental components: the likelihood, the prior, and the posterior.
Moreover, without such fundamental understanding, the analytical
power of Bayesian statistics, beyond chronology construction, may
not be obvious, therefore slowing rather than enhancing more
general adoption.

To mitigate this problem, this article highlights how archaeologists
may use Bayesian inference to approach complex questions
through a simple fictional example. This approach allows archae-
ologists to evaluate, compare, and update their hypotheses di-
rectly, using the weight of evidence and a straightforward process.
We consider this one of the most significant impacts of the
Bayesian paradigm. In addition, Bayesian inference requires
archaeologists to become cognizant of and transparent about
prior and current information for statistical analyses within a
probabilistic structure. The framework explicitly incorporates all
information (prior and current) to enable a more comprehensive
understanding of a problem.

As a result, applications of this method are conducive to replica-
tion, allowing them to be improved upon by other archaeological
scientists. In this light, Bayesian inference dovetails with ongoing
efforts to promote open science methods and open data in
archaeological research. This context encourages researchers to
outline the entire logical process that underlies their results. Due
to its advantages, we believe that Bayesian inference is well
positioned to become a standard approach to evaluating quan-
titative hypotheses in archaeology.
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John Watanabe, Sophie Nichols-Watanabe, Robert (Bob) L. Kelly,
and the Dartmouth Coach for inspiring and facilitating the
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fictional Monico culture to come to life.

All files, R code, and data necessary to replicate the manuscript
are available as an R Markdown (.rmd) document from the Open
Science Framework (DOI:10.17605/OSF.I0/54F62). For conveni-
ence, the R Markdown file produces a PDF preprint of the
manuscript. This may be accessed here: https://osf.io/54162/.

For supplemental material accompanying this article, visit https://
doi.org/10.1017/aap.2022.10.

A Journal of the Society for American Archaeology


http://www.warrenmuzak.com/
https://osf.io/54f62/
https://osf.io/54f62/
https://doi.org/10.1017/aap.2022.10
https://doi.org/10.1017/aap.2022.10
https://doi.org/10.1017/aap.2022.10
https://doi.org/10.1017/aap.2022.10

Supplemental Text 1. Spanish Translation.

The authors declare no competing interests.

NOTES

1. This example was inspired by creative works such as Neil Thompson's “The
Mysterious Fall of the Nacirema” (1972), Kent Flannery's The Early Meso-
american Village (1976) and “The Golden Marshalltown” (1982), and John
Shea's “Uwasi Valley Tales” from Prehistoric Stone Tools of Eastern Africa: A
Guide (2020).

2. Not all sets are enumerated here, but this example should enable the reader
to imagine how this can occur in a total of 10 unique ways. Although in this
case the solution is quite simple, in other applications, the solution might not
be as obvious; for example, the number of ways five successes can occur in
10 tries—that is, 10 choose 5= 252.
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