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Abstract. In this paper we prove that if MC ¼
A C
0 B

� �
is a 2� 2 upper tri-

angular operator matrix on the Hilbert space H
L

K and if �ðAÞ \ �ðBÞ ¼ ;, then �
is continuous at A and B if and only if � is continuous atMC, for every C 2 BðK;H Þ.
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1. Introduction. Throughout this note let H and K be Hilbert spaces, let
BðH;K Þ denote the set of bounded linear operators from H to K, and abbreviate
BðH;H Þ to BðH Þ. If T 2 BðHÞ write NðT Þ and RðT Þ for the null space and range of
T; �ðT Þ ¼ dimNðT Þ; �ðT Þ ¼ dimNðT�Þ; �ðT Þ is the spectrum of T; �aðT Þ is the
approximate point spectrum of T; �dðT Þ is the defect spectrum of T; �0ðT Þ is the set
of eigenvalues of T; �00ðT Þ is the set of isolated points of �ðT Þ that are eigenvalues
of finite multiplicity. An operator T 2 BðHÞ is called left semi-Fredholm if it has
closed range with finite dimensional null space and right semi-Fredholm if it has
closed range with its range of finite co-dimension. If T is both left semi- and right
semi-Fredholm, we call it Fredholm. The index of a left semi- and right semi-Fred-
holm operator T 2 BðH Þ is given by

iðTÞ ¼ �ðT Þ 	 �ðT Þ:

The essential spectrum �eðT Þ, the Weyl spectrum !ðT Þ and the Browder spec-
trum �bðT Þ of T 2 BðHÞ are defined in [5] and [6] as follows:

�eðT Þ ¼ f� 2 C : T	 �I is not Fredholmg;

!ðT Þ ¼ f� 2 C : T	 �I is not Weylg;

�bðT Þ ¼ f� 2 C : T	 �I is not Browderg:

Evidently

�eðT Þ � !ðTÞ � �bðT Þ ¼ �eðT Þ [ acc �ðT Þ;

where we write accG for the accumulation points of G � C. We say that Weyl’s
theorem holds for T 2 BðHÞ if there is equality
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�ðT Þ n !ðTÞ ¼ �00ðT Þ; ð1:1Þ

and that Browder’s theorem holds for T 2 BðH Þ if there is equality

!ðT Þ ¼ �bðT Þ: ð1:2Þ

If ðKnÞ is a sequence of compact subsets of C, then by the definition, its limit
inferior is lim inf Kn ¼ f� 2 C : there are �n 2 Kn with �n ! �g and its limit superior
is lim supKn ¼ f� 2 C : there are �nk 2 Knk with �nk ! �g. If lim inf Kn ¼ lim supKn,
then limKn is defined by this common limit. A mapping f, defined on BðH Þ, whose
values are compact subsets of C, is said to be upper (lower) semi-continuous at T,
provided that if Tn ! T (in the norm topology) then lim sup fðTnÞ � fðT Þ

( fðT Þ � lim inf fðTnÞÞ. If f is both upper and lower semi-continuous at T, then it is
said to be continuous at T and in this case lim fðTnÞ ¼ fðT Þ.

2. Main results. When A;An 2 BðHÞ and B;Bn 2 BðK Þ are given we denote by
MC and Mn the operators acting on H� K defined by

MC ¼
A C
0 B

� �
; Mn ¼

An Cn

0 Bn

� �
;

where C;Cn 2 BðK;H Þ.
Consider the following example: let U 2 Bðl2Þ be the unilateral shift, An ¼ U,

Bn ¼ U�, and Cn ¼
1
n ðI	UU�Þ. Then on l2 � l2 we have

Mn ¼
An

1
n ðI	UU�Þ

0 Bn

� �
! M ¼

U 0
0 U�

� �
;

as n	!1. For operator matrices Mn and M we have �ðMnÞ ¼ f� 2 C : j�j ¼ 1g and
�ðMÞ ¼ f� 2 C : j�j � 1g. Therefore �ðMnÞ 6! �ðMnÞ.

However, we have the following result.

Theorem 2.1. Let A 2 BðH Þ and B 2 BðK Þ be such that �ðAÞ \ �ðBÞ ¼ ;. Then �
is continuous at A and B if and only if � is continuous at MC, for every C 2 BðK;HÞ.

Proof. Since �ðAÞ \ �ðBÞ ¼ ;, there exists 	 > 0 such that dð�ðAÞ; �ðBÞÞ > 3	.
Now, by the upper semi-continuity of the spectrum at A and B [11], for every
sequence ðAnÞ in BðHÞ and every sequence ðBnÞ in BðK Þ such that An ! A and
Bn ! B there exists a natural number n0 such that n � n0 ) �ðAnÞ � ð�ðAÞÞ	 and
�ðBnÞ � ð�ðBÞÞ	. Since �ðAnÞ \ �ðBnÞ ¼ ;, for every n � n0, we have that �ðMnÞ ¼

�ðAnÞ [ �ðBnÞ.
ð)Þ Suppose that � is continuous at A and B. Then

�ðMcÞ ¼ �ðAÞ [ �ðBÞ � lim infð�ðAnÞ [ �ðBnÞÞ ¼ lim inf �ðMnÞ:

Therefore � is lower semi-continuous at MC, and hence � is continuous at MC for
every C 2 BðK;H Þ.
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ð(Þ Suppose that � is continuous at MC for every C 2 BðK;HÞ. We shall show
that � is continuous at A. Let � 2 �ðAÞ. Then � =2 �ðBÞ and

� 2 �ðAÞ � �ðMCÞ � lim inf �ðMnÞ:

Therefore there exists a sequence ð�nÞ such that �n 2 �ðMnÞ and �n ! �. But
�ðAnÞ \ �ðBnÞ ¼ ;, for every n � n0; hence we have �ðMnÞ ¼ �ðAnÞ [ �ðBnÞ. If there
exists a subsequence ð�nkÞ of ð�nÞ such that �nk 2 �ðBnkÞ, then we have
� 2 lim sup �ðBnÞ � �ðBÞ. This is a contradiction. Therefore �n 2 �ðAnÞ, for every
n � n0. Thus � 2 lim inf �ðAnÞ, and hence � is continuous at A. Similarly, � is con-
tinuous at B. &

If A 2 BðH Þ and B 2 BðK Þ such that !ðAÞ \ !ðBÞ ¼ ;, then we have
!ðMCÞ ¼ !ðAÞ [ !ðBÞ [10, Theorem 4]. Now, we have the following theorem.

Theorem 2.2. Let A 2 BðH Þ and B 2 BðK Þ such that !ðAÞ \ !ðBÞ ¼ ;. Then ! is
continuous at A and B if and only if ! is continuous at MC, for every C 2 BðK;H Þ.

Proof. Since ! is upper semi-continuous, the proof is similar to that of Theorem
2.1. &

� and � can be viewed as functions assigning �ðT Þ and �ðT Þ to each T 2 BðH Þ,
respectively.

Theorem 2.3. Let A 2 BðHÞ, B 2 BðK Þ and C 2 BðK;HÞ such that
(1) �ðMCÞ ¼ �aðAÞ [ �dðBÞ [ f� 2 C; �ðB	 �Þ 6¼ �ðA	 �Þg;
(2) �a is continuous at A;
(3) �d is continuous at B.
Then � is continuous at MC.

Proof. It is sufficient to show that � is lower semi-continuous at MC. Let
� 2 �ðMCÞ. We shall divide the proof into three cases.

Case 1. If � 2 �aðAÞ, then since �a is continuous at A there exists a natural
number n0 such that for every n > n0 we have � 2 �aðAnÞ � �ðMnÞ.

Case 2. If � 2 �dðBÞ, then by continuity of �d at B there exists a natural number
n1 such that for every n > n1 we have � 2 �dðBnÞ � �ðMnÞ.

Case 3. Suppose that � 2 �ðMCÞ n ð�aðAÞ [ �dðBÞÞ. Then we have �ðB	 �Þ 6¼
�ðA	 �Þ, �ðA	 �Þ ¼ 0, and �ðB	 �Þ ¼ 0. Therefore iðA	 �Þ 6¼ iðB	 �Þ, and hence
it follows from the continuity of the index that there exists n2 such that for n > n2,
iðAn 	 �Þ 6¼ iðBn 	 �Þ. Since functions � and � are continuous at A and B [3, Cor-
ollary 2.3], respectively, we have that �ðBn 	 �Þ 6¼ �ðAn 	 �Þ. Therefore � 2 �ðMnÞ

for every n > n2. It follows that in all three cases � is continuous at MC. &

If MC obeys Browder’s theorem, then the Weyl spectrum, the Browder spectrum
and the spectrum are continuous at MC.

Theorem 2.4. Let A 2 BðHÞ, B 2 BðK Þ and C 2 BðK;HÞ such that
(1) �ðMCÞ obeys Browder’s theorem;
(2) �a is continuous at A;
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(3) �d is continuous at B.
Then �, !, and �b are continuous at MC, respectively.

Proof. Let � 2 �ðMCÞ. If � 2 �aðAÞ [ �dðBÞ [ f� 2 C;�ðB	 �Þ 6¼ �ðA	 �Þg, then
it follows from Theorem 2.3 that � 2 lim inf �ðMnÞ. Suppose now that

� 2 �ðMCÞ n ½�aðAÞ [ �dðBÞ [ f� 2 C; �ðB	 �Þ 6¼ �ðA	 �Þg�:

Then �ðA	 �Þ ¼ �ðB	 �Þ ¼ 0, �ðB	 �Þ ¼ �ðA	 �Þ, and so iðA	 �Þ ¼ 	iðB	 �Þ.
By [1, Lemma 1.2], iðMC 	 �Þ ¼ 0. Since MC obeys Browder’s theorem, � =2 �bðMCÞ.
Therefore � is an isolated point of �ðMCÞ, and so � 2 lim inf �ðMnÞ. Hence � is
continuous at MC. It follows from [2, Theorem 2.2] that ! and �b are continuous at
MC. &
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