Canad. Math. Bull. Vol. 18 (3), 1975

FUNCTIONS BELONGING TO A DIRICHLET
SUBALGEBRA OF THE DISK ALGEBRA

BY
BRUCE LUND

Browder and Wermer in [2] give a method for constructing Dirichlet subalgebras
of the disk algebra. In this note we show that these Dirichlet algebras do not con-
tain any non-constant functions which satisfy a Lipschitz-one condition on asubin-
terval of the unit circle.

Let 4 be a uniform algebra on a compact Hausdorff space X (see [6] for facts
about uniform algebras). We say that A4 is a Dirichlet algebra on X if Re A=
{Re(f):f € 4} is uniformly dense in Cx(X), the real-valued continuous functions
on X. Let T={z:|z|=1} and U={z:|z| <1} be the unit circle and the open unit disk
in the complex plane. The disk algebra, A(T)={f € C(T):f extends analytically to
U} is a Dirichlet algebra on T (see, for example, [4], p. 43). Browder and Wermer
in [2] give a method for constructing subalgebras of A(7) which are still Dirichlet
algebras on 7. Their method goes as follows: Let p(e**) be a homeomorphism of T
such that dp(e'*)/dt=0 a.e. with respect to Lebesgue measure on 7. Define

A, = A(T) N {feC(T):fo pe A(T)}.
Browder and Wermer show that 4,, is a Dirichlet algebra on 7. In [1] Blumenthal
shows that 4, is a maximal uniform algebra in A(T).

The method of showing that 4, is a Dirichlet algebra is indirect in that the
result is obtained by showing that there are no non-zero real annihilating measures
for A4,. No work appears to have been done on describing what types of functions
may belong to 4,,. Our theorem below gives a result in this direction.

THEOREM. If f€ A, andif f satisfiesa Lipschitz-one condition on some subinterval
of T, then f is a constant function.

This theorem is a consequence of the following lemma which is of some inde-
pendent interest.

LemMA. Suppose F € A(T) and suppose there is an interval I={exp(it):a<t<b}
so that F is of bounded variation on 1. Assume also that

dF(e®) —0

a.e. for te]la,b]
dt
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Then F is a constant function.

Proof. We first note that if /=T, then the Lemma follows directly from the
following two classical results which may be found in [3], p. 42.

(1) Iffe A(T)andif f(e*) is of bounded variation on T, then f(e*®) is absolutely
continuous on T
(2) If fe A(T), then f(e*) is absolutely continuous on T if and only if
f'(z) e H(U). Moreover, if f'(z) € H'(U), then
e _ ie'lim f'(re) a.e.
dt r=1
For the case I#T, the idea of the proof is as follows. We multiply F by a suitable
polynomial in order to form a new function G which is of bounded variation
along a simple closed piecewise analytic curve in U which contains I. Statements
(1) and (2) can be applied to the function G o ¢(z) where ¢(z) is a conformal map of
U onto the region lying inside the curve. The final result then follows by a simple
argument.
Let F(z) denote the analytic extension of F(e'*) to U and let M=max{|F(z)|:
|z]<1}. An elementary computation involving the Cauchy integral formula gives

3) F'(re®)] < IM_ for 0<r<1
—r

Set
G(z) = F)[(1—e "2)(1—e2)]?
Since we have G'(re*")=(0G (re®*)/0r)e~* for 0<r<1, we may use (3) to conclude
that (0G(re?®)/0r) and (0G(re®™)/or) are continuous for 0<r<1.

We let V={re?:a<t<b and 0<r<1}. Suppose $(z) is a conformal map from
U onto V. Then ¢ extends to be a homeomorphism of U onto ¥V, and $(e*) is
absolutely continuous ([3], p. 44). We will suppose that ¢(1)=e, ¢(e't)=e"?,
and ¢(e't)=0.

The hypothesis that F(e*?) is of bounded variation along I implies that G o ¢(e?)
is of bounded variation on [0, #,]. Moreover, the continuity of (0G(re®)/dr) and
(0G (re®)/or) for 0<r< 1 implies that G o ¢(e?) is of bounded variation on [¢;, 27].
Consequently, G o ¢(e") is of bounded variation on 7. Since G o ¢(z) € A(T), we
can conclude by (1) and (2) that (d(G - ¢(e**))/dt) gives the boundary values of a
function in H*(U).

By hypothesis (dF(e'*)/dt)=0 a.e. for te [a,b] and from this we obtain
d(F o ¢(e")[dt)=0 a.e. for t € [0, #,] ([5], Corollary 2). If we let

P(z) = [(1—e " z)(1—e%2)]?,
then

d(G o ¢(e") _ d(F o $(e") it iny AP o p(e™))
A ot Po $(e")+F o $(e) o
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a.e. for t € [0, 27]. But then

d(G + ()
e e =F,
T $(e")
Since F o ¢(e')(d(P o ¢(e'))/dt) gives the boundary values for a function in H'(U),
we therefore conclude that (d(F o ¢(e*))/dt)=0 a.e. for t € [0, 2x]. Since F o ¢(2)
extends analytically across {e't: 1, <t<t,}, it follows that F(z) is a constant function.
This completes the proof.

‘K_P";;ﬂi)) ae. for tel0,t].

Proof of Theorem. If f(e*’) satisfies the hypothesis of the theorem, then F(e'f)=
feop(ett)ye A(T). If f(e') is Lip-1 on {e*: A<t<B}, then F(e'") is of bounded
variation on p~*({e**: A<t<B})={e‘*:a<t<b}. The singularity of p(e’’) and the
Lip-1 condition on f(e*¢) imply that dF(e*)/dt)=0 a.e. for ¢ € [a, b]. We now apply
the Lemma to conclude that F, and hence f, is identically constant on T.
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