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Complementary Approaches and Time Series

10.1 Complementary Approaches

In Chapters 5, 6, and 7 we discussed repeat-pass radar interferometry for measur-
ing the range component of surface deformation, which corresponds to the line of
sight (LOS) vector between a point on the ground and the satellite. In Chapter 11
we discuss how deformation measurements can be combined from ascending and
descending orbits to obtain two LOS components of deformation in cases where
the deformation event occurs as a step function in time (e.g., earthquake). How-
ever, two components do not resolve the full vector motion, and the deformation
may not occur as a step function in time. Moreover, the magnitude of the deforma-
tion gradient may exceed the capabilities of the InNSAR system (i.e., greater than ~7x
radian per pixel) and/or the extreme deformation event may result in InSAR decor-
relation. In these cases, methods have been developed to provide this additional
information. We discuss these complementary approaches in this chapter.

We first review SAR image cross-correlation methods to recover large displace-
ments in the range and azimuth directions. At best, these approaches can recover
deformation to a precision of 1/10 of a pixel, so they are mainly used for estimating
large deformations (0.5-10 m). Of course, the range measurement is in the same
LOS direction as the interferogram, so this measurement is most useful to augment
the interferogram in regions of large displacement gradient and/or decorrelated
areas. The azimuth measurement is parallel to the ground track and perpendicu-
lar to the range measurement so provides new vector information (Fialko et al.,
2001; Wright et al., 2004), but the precision is limited to about 1/10 of an azimuth
pixel. The same azimuth component of deformation can be derived at a some-
what higher accuracy using multiple aperture interferometry (MAI) as discussed
in Section 10.3.

The remainder of the chapter discusses methods for combining a set of interfer-
ograms derived from many SAR images to recover deformation time series with
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148 10 Complementary Approaches and Time Series

either uniform velocity in time (stacking, Section 10.4) or with a nonuniform time
history (i.e., small baseline subset methods (SBAS), Section 10.5). Section 10.6
discusses methods for reconstructing displacement time series in regions where
there is significant decorrelation. This is accomplished by first identifying pixels
that remain coherent over long time periods; these pixels have stable amplitude
and phase, so they are called persistent scatterers (PS).

10.2 Range and Azimuth Pixel Offsets

Surface deformation between a reference and repeat image produces localized
pixel displacement relative to the pixels within the larger image. This can be
used to measure deformation and the approach is called pixel offset tracking
(POT). This approach was originally developed to measure deformation in repeated
optical images (e.g., Van Puymbroeck et al., 2000) and can also be used for
measuring deformation from repeated SAR images. Indeed, the optical and SAR
approaches are often combined to improve overall accuracy and coverage of
surface deformation (He et al., 2023).

As discussed in Section 3.7.3, the reference and repeat images must first be
aligned to subpixel accuracy to achieve high interferometric coherence. This can be
accomplished using either geometric alignment based on precise orbits or 2-D com-
plex cross-correlation of small patches typically 64 by 64 pixels. (Larger patches
will provide a more robust offset estimate but will use more computer time.) Let
Cy (r,a) be a patch from the reference SLC image and C; (r,a) be a patch from the
repeat image where r and a are the range and azimuth coordinates, respectively.
The normalized 2-D cross-correlation function is

Cy xxCJ
,/C1CT,/C2C;

where the *x operation represents a 2-D convolution and /C Cj is the amplitude in

y (Ar, Aa) = (10.1)

the reference image (at zero shift). The location of the peak in the cross-correlation
function provides an estimate of the displacement between the two images (Ar, Aa),
while the strength of the correlation peak provides an estimate of the reliability of
the offset estimate. (As a practical note, the mean is removed from each patch and
the edges are zero-padded to minimize edge effects.)

Note that the convolution theorem can be used to replace the numerically slow
2-D convolution with the product of the Fourier transforms given by

FFR ) R(G)]

JCiC; GG

vy (Ar,Aa) = (10.2)
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10.2 Range and Azimuth Pixel Offsets 149

The patches could be complex numbers taken from the SLCs of the reference and
repeat images or SAR amplitude images. To avoid aliasing, the amplitude images
should be oversampled by two times (Werner et al., 2005). These functions (Equa-
tions (10.1) and (10.2)) are available in the GMTSAR program xcorr and there are
many options for setting the patch size, the oversampling of the amplitude data, and
the oversampling factor for the cross-correlation output.

If there is a large amplitude deformation within the prealigned images, the local
offset estimates are a measure of local surface deformation (Zitova and Flusser,
2003). This method is called pixel offset tracking and compared to the interferomet-
ric approach, POT is better suited for larger displacements and is more tolerant to
decorrelations (Werner et al., 2005; Colesanti and Wasowski, 2006) (Figures 10.1
and 10.2). For example, in the case of a large earthquake, the InSAR phase is often
decorrelated in the epicentral area of extreme ground shaking (Figure 10.1(a)).
However, pixel offset tracking can provide deformation measurement even at the
rupture trace (Figure 10.1(b/c)).

Theoretically, the interferometric approach can only detect deformation at a
maximum deformation gradient of ~ radians per pixel, especially considering the
noise in the data, but there is no upper limit for pixel offset tracking. For example,
the very first applications using SAR images to track glacier streams were using
interferometry (Goldstein et al., 1993; Massonnet and Rabaute, 1993; Joughin et al.,
1996a; Rignot et al., 1997), but soon scientists determined that offset tracking
performs well even on very fast-flowing ice streams (Strozzi et al., 2002), and can
potentially detect seasonal velocity changes (Sundal et al., 2011).

(a) AILOS—2 Asle.LOS deformation (b) ALOS—Z Asc.Azimuth offset
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Figure 10.1 Deformation of the 2023 Turkey earthquake doublet derived by
ALOS-2 ScanSAR data (He et al., 2023). (a) is the measured radar phase with
the inset map being unwrapped LOS deformation. (b) is the azimuth offset with
(c) being range offset.
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Figure 10.2 (a) unwrapped interferogram for the 2024 Noto Earthquake in Japan
using ALOS-2 stripmap data, masked areas close to the shorelines are solutions
with unwrapping errors due to strong shaking of the earth’s surface. (b) Range
offset estimate using POT can help acquire displacement estimates even at area
with strong decorrelation. Adapted from Schmidt and Biirgmann (2003).

10.3 Multiple Aperture and Burst Overlap Interferometry

Azimuth offsets can be estimated using a completely different approach called
multiple aperture interferometry (MAI) (Bechor and Zebker, 2006). Consider a
localized surface displacement in the azimuth direction having a magnitude of x.
Suppose the SAR is focused at a forward squint angle on the ground of 6; and
the localized deformation is imaged before and after the event. An interferogram
constructed from the reference and repeat images will have a localized phase cor-
responding to the small component of deformation projected into the squinted LOS
vector of ¢r = 47”x sin 6y where A is the radar wavelength (Bechor and Zebker,
2006). For a large magnitude of azimuth deformation (~1 m) and a nominal
squint angle of a fraction of a degree, this phase change will be small, and the
interferogram will be dominated by much larger phase distortions due to the tropo-
sphere and ionosphere. The MAI approach deliberately filters a single SAR image
into a forward-looking image and a backward-looking image so two sub images
are available. Then one constructs the forward and backward interferograms and
computes their difference as

Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 13 Oct 2025 at 14:34:56, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009606226.011


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009606226.011
https://www.cambridge.org/core

10.3 Multiple Aperture and Burst Overlap Interferometry 151
4 /. .
o —dp = 7x (sm 0 — sin Gb) (10.3)

The phase changes due to the atmospheric and ionospheric effects largely can-
cel in the difference interferogram, while the phase change due to the along-track
motion is doubled. Since the change in squint angle is related to the Doppler spec-
trum, a zero-Doppler SAR image, having an azimuth bandwidth of the PRF, can be
decomposed into forward and backward-looking images with a band-pass filter in
the azimuth direction (Scheiber and Moreira, 2000).

Thus, the computation for MAI interferograms involves three steps. The first
step is to filter the full aperture SAR data into forward-looking and backward-
looking subbands (along the track direction or column-wise). This is done on both
reference and repeat SAR images. During this step, one should also compute the
spectral separation between the forward-looking and backward-looking subbands
(i.e., Af). The second step is to compute interferograms between the forward-
looking reference and forward-looking repeat and the backward-looking reference
and backward-looking repeat subband datasets. Then one will be able to derive the
azimuthal deformation with Equation 10.4

PRF (¢ — ¢5)
a= W (10.4)
where PRF is the pulse repetition frequency. The azimuth pixel shift is converted
to pixel shift in meters by multiplying by the ground-track pixel size [, = V,/PRF
where V, is the ground track velocity. Figure 10.3 shows examples of azimuthal
deformation estimated using this MAI technique in comparison with pixel offset
tracking; theoretically they should be equal, but there are practical issues associated
with each approach.

Essentially, the MAI technique maps any azimuthal change into the double dif-
ference radar phase, and it does not differentiate whether it is caused by true ground
deformation, along-track orbit error, or bias from the ionosphere. The bending of
the radar beam caused by variation in the ionosphere can be assumed as a linear
function related to the azimuthal gradient of the ionospheric phase as described in
Liang and Fielding (2017)

0 iono
OMAI-iono = agg—a +b (10.5)

where a and b are coefficients of the polynomial fit to the gradient in the TEC of the
ionosphere. Thus, the removal of this effect depends on the accurate estimates of
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Figure 10.3 Multiple aperture interferograms (a and c) and their corresponding
pixel offsets estimate (Bechor and Zebker, 2006). (b) The along track and InSAR
LOS measurements with black arrows and GNSS vector measurements in red
arrows. Do note the GNSS arrows are projected into radar LOS for comparison
purposes.

the ionosphere (Figure 10.4). Since the quality (and coherence) of a subband inter-
ferogram is generally lower than the original full-bandwidth interferogram, and the
ionospheric estimate also depends heavily on the coherence of the interferogram,
thus such a method is usually considered only viable for good quality SAR data.

The underlying theory of the MAI technique takes advantage of the frequency
separation between the forward-looking and backward-looking radar beams.
Nonetheless, this separation can also be achieved with an intentionally steering the
antenna as described in Section 8.5 on TOPSAR (Figure 8.7). Due to the designed
sweeping antenna, the induced frequency separation is much larger than the PRF
bandwidth of a strip-mode SAR. With such a design, this larger frequency sep-
aration makes double-difference phase more sensitive to any azimuthal motion
or misregistration, but at a cost that this calculation can only be achieved at the
2-km-wide burst overlap area in the SAR image. This is referred to as burst overlap
interferometry (BOI).

Thus, when one aims to measure azimuthal motion to form a 3-D displacement
field with BOI, interpolation has to be made using the intermittent measurements.
An example of such analysis is shown in Figure 10.5. Due to its high sensitivity
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10.3 Multiple Aperture and Burst Overlap Interferometry 153

Figure 10.4 MALI interferogram estimated for the 2015 Nepal earthquake using
ALOS-2 ScanSAR data (Liang and Fielding, 2017). Top left is the MAI interfer-
ogram without ionospheric phase correction using a two-burst cycle length (27¢).
Top right is the MAI interferogram with the ionospheric phase corrected. Bottom
left is the ionospheric phase estimated using the range split-spectrum method used
for correction. Bottom right is the estimated ionospheric effect in the MAI inter-
ferogram using Equation 10.5. Reprinted with permission from IEEE Transactions
on Geoscience and Remote Sensing.

30.4° S
s (b)
e 0km
— @
> 10) it =)
T JFig2(a) e i
il Fig S5(a)|
. T Vg
296 e / o
il — 5 Sinai %ate/ e
< ® o
/A |
| Fig2(0) oS N
| %
. : . © [ right Flight |
28.8 T =~-_Arabian Direction| Direction /
A . gFlate ©© A /
\ o / Al /| \\ A
% f mm/yr mm/yr
T | Fig2(c) (@ 6 S éf’
/ A
T ®
o || T —
28
g i /\E}’yD
34.4° 35.2° 36° 34.4°

Figure 10.5 Along-track velocity derived from burst overlap interferometry
(Liet al., 2021).
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to azimuthal motion, such a technique is now also used to map subtle interseismic
deformation as small as a few millimeters per year (Li et al., 2021) and mapping
plate motion in a global framework (Lazecky et al., 2023).

10.4 Stacking Approach

An interferogram measures surface deformation that occurred between the two
SAR acquisition times along the radar LOS direction, and the stacking approach
solves for the surface deformation rate by averaging interferograms with sufficient
phase coherence that contain the common deformation signal of interest. More spe-
cially, the average LOS velocity v,,, of each ground pixel over a time period of
interest T' can be calculated as (Sandwell and Price, 1998):

Vayg = 2icG di

2ieG li

where G is a subset of coherent interferograms that were formed using two SAR

scenes acquired within the time period 7. The LOS measurement (in meters) and

the temporal baseline of the i interferogram in G are written as d; and f;, respec-

tively. To analyze how surfaces deform over time, we can solve for the average

LOS velocities over multiple periods of interest using Equation 10.6. Over each

period of interest 7, we compute the cumulative LOS surface deformation over
this period as the product of vy, ; and T;.

Averaging interferograms that contain the common deformation signal of inter-
est reduces the impact of random noise (e.g., tropospheric turbulence noise) by
~ VS, where S is the number of independent SAR acquisitions used in stacking.
Alternatively, averaging interferograms that are formed using a particular SAR
scene provides a way to characterize the InSAR noise term associated with that
SAR acquisition. Under the assumption that spatially coherent tropospheric noise
is the primary error source, the observed InSAR phase ¢, at an interferogram pixel
can be written as (Hanssen, 2001):

(10.6)

4
¢rn ~ Tﬂ-(drn +ap, — ar) (107)

where A is the radar wavelength and d,,, is the LOS deformation (d,, — d,) between
two SAR acquisition dates r and n. The tropospheric noise along the LOS direction
on the two SAR acquisition dates is a, and a,, respectively.

We can generate up to S — 1 interferograms using a common-reference SAR
scene r (Tymofyeyeva and Fialko, 2015) from S SAR scenes over an area of inter-
est. We define the common scene stacking (CSS) solution of size K as the average
of a subset of K interferograms (Zebker et al., 2023):
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(10.8)

where G is a set of SAR acquisitions that were used to form K (K < § — 1) randomly
selected interferograms with a common-reference SAR acquisition r.

The CSS solution §,, k contains three terms: the sum of LOS deformation signals
of the K interferograms, the tropospheric noise a, on the reference date r, and the
average tropospheric noise of all other acquisition dates in G. Because tropospheric
noise is typically not correlated beyond a few hours (Emardson et al., 2003), the
term )}, .2 an approaches zero when K is sufficiently large. In this scenario, S,k
only contains the sum of deformation signals and —a,. In the case that no deforma-
tion signal is present in a dataset, the common-reference stacking solutions derived
from randomly selected interferogram subsets converge to —a, as K increases.

While the deformation term d,,, is typically different in these K interferograms
with a common-reference scene r because of different temporal baselines, the tro-
pospheric noise term a, remains the same. When the common-reference stacking
solutions derived from randomly selected interferogram subsets do not converge,
the differences between these subset stacking solutions can be used to determine
the temporal characteristics of the deformation signal. For the linear deformation
case, Tymofyeyeva and Fialko (2015) developed a method to separate deformation
signals and noise. A common-reference stacking solution of a forward K subset as
the average of K forward interferograms:

r+K r+K
r,K 47TK Z (brn Z drn ay (109)
n=r+1 n r+1

where the reference date r is earlier in time than the nonreference date n for
a forward interferogram. Similarly, a common-reference stacking solution of a
backward K subset is defined as the average of K backward interferograms:

E,,Kzﬁ Z b~ Z v — ay (10.10)

where the reference date r is later in time than the nonreference date n for a
backward interferogram.

By combining Equations 10.9 and 10.10, we eliminate a, and estimate the
average deformation rate, v,, between SAR acquisitions » — K and r + K as:
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" - (10.11)
~ Tor ( Z dpn — Z drn)

n=r+1 n=r-K
where T}, is defined as the total time spanned by all interferograms as:

r+K r—1

Tior = Z Aty + Z |Atrn| (10.12)
n=r+1 n=r—-K
For a backward interferogram (n < r), At,, is negative. Similarly, we eliminate the
deformation term and estimate the tropospheric noise term as:

1 — —
arz_E(Fr,K‘i'Br,K) (1013)

The sum of deformation signals in the forward and backward K interferogram sub-
sets equals zero when (1)2;;15“ At,, equals Z::r_ x |Aty| and (2) the deformation
signal is linear in time. The presence of nonlinear deformation signals can lead to
differences in solutions derived from Equation 10.13 for different K values. These
differences can be used as a measure of the uncertainty in the tropospheric noise

estimates (Zebker et al., 2023).

10.5 Small Baseline Subset Method

Berardino et al. (2002) and Schmidt and Biirgmann (2003) developed the SBAS
approach for reconstructing surface deformation time series from a stack of inter-
ferograms. Here we review how the SBAS algorithm works. Suppose we want
to solve for the unknown LOS phase history ¢(¢) at a ground pixel as shown in
Figure 10.6. The i interferogram formed from two SAR scenes acquired at t,,
and #, measures the unwrapped phase A¢; at this pixel. Assuming the topography-
related phase has been removed, A¢; can be related to the LOS deformation d; that
occurred between two SAR acquisition times #,, and ¢, as:

n—1

4n 4n
Agi=—-(di+n)~— ) m (10.14)

I=m

where A is the radar wavelength, n; is the noise term of the i’ interferogram, and m;
is the unknown LOS deformation at the I epoch between SAR acquisition times
t;and t741.

An interferogram can measure A¢; in Equation 10.14 with negligible topo-
graphic or spatial decorrelation error only if the spatial baseline (the distance
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Figure 10.6 An LOS phase history we want to solve for at a given ground pixel
location. The phase in a single interferogram formed from SAR data acquired at
t,, and t, measures A¢;. Adapted from Tong and Schmidt (2016).

between the satellite locations at two SAR acquisition times) is small. The inter-
ferogram correlation becomes zero when the baseline component perpendicular to
the LOS direction (perpendicular baseline) is larger than the critical baseline B,,
defined as:

1
B.=Ltaneg (10.15)
CcT

where p is the range between the radar satellite and the ground pixel, A4 is the
signal wavelength, 6 is the radar incidence angle, c is the speed of light, and 7 is
the radar pulse length. In practice, an interferogram with a perpendicular baseline
smaller than B, may still suffer from severe decorrelation artifacts (e.g., due to
vegetation growth). To limit phase decorrelation noise in the final time series, the
SBAS method selects coherent interferograms as input data based on user-defined
temporal and spatial baseline thresholds. These thresholds depend on the specific
site characteristics and radar system parameters (e.g., radar wavelength), and it is
recommended to include as many coherent InNSAR phase measurements as possible
in the SBAS inversion. This is because (1) interferograms with longer temporal
baselines often contain larger secular deformation signals and (2) random phase
noise tends to decrease as the number of coherent InNSAR observations increases.

The formulation of the SBAS inversion is shown schematically in Figure 10.7.
Given S+ 1 SAR images forming N interferograms with small baselines, we can
define a matrix representation of the N-equation SBAS system as:

Gm=d (10.16)
where m=[m; ... mg]7 is the vector of S unknown LOS deformation between
each consecutive SAR acquisition,andd =[d; ... dy 17 is the vector of N known

InSAR observations at the pixel of interest. The N X S design matrix G is also called
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Figure 10.7 Schematic showing the relationship between InSAR phase data and
model vectors in the SBAS inversion. From Schmidt and Biirgmann (2003).

the SBAS matrix. If the i interferogram measures the InNSAR phase A¢; between
SAR data acquisition times ¢, and #, as defined in Equation 10.14 at the pixel of
interest, the i row of G has ones in the /! entry for /=m,...,(n—1) and zeros in
the remaining entries.

The vector m in Equation 10.16 can be approximately solved as:

m=G'd (10.17)

where G' is any generalized inverse of G. Here we choose G' as the Moore—
Penrose pseudoinverse, which can be efficiently computed using the singular value
decomposition (SVD). A running sum of the incremental LOS deformation my
yields the LOS deformation time series at the k" epoch Cy = Zle my at the pixel of
interest.

Under the assumption that tropospheric noise can be approximated as random
in time, we introduce a temporal smoothness constraint reduce tropospheric noise
signatures in the LOS deformation estimates, and solve a regularized least squares

problem as:
1 1 0  --- BB [d, |
0 1 1 BBl |
: : : ) - | [m2 :
Aiz] _/ﬁ ()/l 0 Dl =dw (10.18)
0o £ £ - 0 ms 0
| Ah |
1 Pl
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Here A is the temporal smoothing factor that penalizes unrealistically large tempo-
ral variations in m. To give each epoch an equal weight in the inversion, A is scaled
by the corresponding temporal interval A#; of the consecutive SAR observations.
The choice of the smoothing factor can be optimized using independent data such
as the GPS surface deformation time series. This SBAS formulation allows the esti-
mation of the error Ak in the digital elevation model (DEM) at the pixel of interest
from InSAR data (Berardino et al., 2002) because: (1) Ak can lead to an error in
the i INSAR LOS deformation observation Ad; that is linearly proportional to the
InSAR perpendicular baseline B; and (2) the constant scaling factor S can be cal-
culated from the radar wavelength, the incidence angle of the radar wave, and the
distance from the radar to the ground.

To reduce decorrelation noise, we may also solve for m using a weighted least
squares scheme (Tong and Schmidt, 2016):

WGm = Wd (10.19)

Here W is a diagonal weight matrix defined as:

i 0 0 0 .- 0
0 7 0 0 - 0

W= 0 0 - yy -~ 0 (10.20)
0 0 0 0 - 0

where 7; is the spatial phase coherence of the ith interferograms. An example of
interseismic velocity derived from coherence-based SBAS is shown in Figure 10.8.

10.6 Persistent Scatterer Algorithms

Both stacking and SBAS time series analysis methods require that InNSAR phase
observations are sufficiently coherent at the pixel of interest. Changes in sur-
face scattering properties (e.g., due to vegetation growth) between consecutive
radar acquisitions lead to InSAR phase decorrelation noise (Zebker and Villasenor,
1992). Because InSAR phase measurements at severely decorrelated radar pixels
can be considered as random wrapped phase values between 0 and 2, they cannot
be used to reconstruct spatially coherent surface deformation patterns. Persistent
scatterer (PS) techniques (e.g., Ferretti et al. (2000); Hooper et al. (2004); Ferretti
etal. (2011)) have been developed to identify radar pixels with minimal changes in
surface scattering properties (e.g., man-made structures, rocks, and barren lands).
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Figure 10.8 (a) Shaded relief map of the Cascade Landslide Complex and the
Columbia River Gorge. The four main lobes of the landslide complex are outlined
with black lines. A continuous GPS site is marked by the open triangle. The inset
map shows the location of the Cascade Landslide Complex and the footprint of the
ALOS-1 scene. (b) Average LOS velocity (a best-fit estimate to displacement time
series) of the Cascade Landslide Complex. Warm colors indicate motion away
from the satellite in the look direction (black solid arrow). (¢c) Cumulative downs-
lope displacement in the deformation zone of the Red Bluff landslide from the
InSAR time-series analysis. The location of the deformation time series is marked
in (b). (d) Comparison of the InSAR time-series with a nearby GPS station P429.
Gray dots show the daily position measured by the GPS and projected into the
radar LOS direction for comparison. Negative LOS displacement corresponds to
ground moving away from the satellite, that is, subsidence. The error bars of the
LOS displacement are estimated from the standard deviations of the InSAR data
within a 1 km window surrounding the sample location (Tong and Schmidt, 2016).
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10.6 Persistent Scatterer Algorithms 161

In areas with dense vegetation, only phase measurements at PS pixels have a high
quality that is suitable for surface deformation time series analysis.

The first generation of PS algorithms (Ferretti et al., 2001; Lyons and Sandwell,
2003; Van Leijen, 2014) modeled radar echoes as the sum of a constant real signal
and a complex circular Gaussian random noise. Based on this model, the returns
from a radar pixel with a high signal-to-noise ratio (SNR) have relatively small
amplitude variations. A pixel with high amplitude stability is identified as a PS
pixel if its phase observations fit a given deformation model. One limitation of such
approaches is that there are typically very few radar pixels with sufficient SNRs to
be selected in natural terrain. To overcome this limitation, Hooper et al. (2004);
Hooper and Zebker (2007); Shanker and Zebker (2007); Huang and Zebker (2019)
selected PS pixels based on the statistics of InNSAR phase measurements. Using
a complex circular Gaussian model for both signal and noise terms, Shanker and
Zebker (2007) estimated the signal-to-clutter ratio (SCR) of each radar pixel using
phase measurements of interferograms that share a common reference SAR image.
A PS pixel is expected to have a relatively high SCR and a narrow phase distribu-
tion. The capability of PS interferometry was further advanced by the SqueeSAR
method (Ferretti et al., 2011; Goel and Adam, 2014; Lv et al., 2014). Ferretti et al.
(2011) jointly analyzed nearby pixels with homogeneous amplitude distributions
(referred to as statistically homogeneous pixels or SHP). The InNSAR phase observa-
tions from each SHP group are averaged to improve SNR, and a covariance matrix
model was employed to filter phase measurements and select PS pixels (Guarnieri
and Tebaldini, 2008). The SqueeSAR-based approach is one of the very few exist-
ing methods that take into account the amplitude statistics of nearby distributed
scatterers (DS). Alternatively, Costantini et al. (2008, 2014) modeled the phase
difference between two adjacent radar pixels as a function of the deformation rate
difference and elevation difference. For each neighboring pixel pair, an optimized
deformation rate difference and elevation difference are solved to minimize the
residual phase difference. The pixel pair is selected as PS if the residual phase dif-
ference is small. Because scattering signal models that take into account the phase
correlation of nearby PS pixels have not been fully developed, existing PS selection
algorithms are mainly based on the statistics of InNSAR phase measurements at each
individual radar pixel. In many cases, a deformation model (e.g., constant velocity)
is employed in the selection process. However, surface deformation characteris-
tics over the area of interest are often unknown. To overcome these limitations, a
PS identification algorithm that analyzes the phase correlation of nearby radar pix-
els based on a similarity measure (the cosine similarity) was proposed (Wang and
Chen, 2022). Here we give a review of the cosine similarity algorithm, which can
be integrated with any existing PS selection algorithm to reduce the false positive
and false negative PS selections at a very low computational cost.
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162 10 Complementary Approaches and Time Series

Given K single look complex (SLC) radar images Si,...,Skx, K —1 wrapped
interferograms that share a common reference SLC image can be formed. The
phase values of these K — 1 interferograms at a pixel m can be written as a phase
vector @, = [@m.1,Pm.2s - - - » Pm k—1]. We define the phase similarity between two
radar pixels m and n as the cosine similarity between the phase vectors ¢,, and ¢,:

K-1
1
Smn = H ; cos(Pmk = Pnk) (10.21)

Here the phase similarity score s, ranges from —1 and 1. A similarity score of
1 means ¢,, and ¢, are identical, O means ¢,, and ¢, are not correlated, and —1
means @, x and ¢, ; differ by x radians for all £’s.

The cosine similarity algorithm is designed to retrieve accurate deformation sig-
nals over low-PS-density natural terrains. In this scenario, the deformation signal
of interest is often caused by geophysical processes, including but not limited to
coastal processes, aquifer pumping and recharge, volcanism, or fault activities.
Because the Earth’s crust can be modeled as a solid continuum, such surface dis-
placements typically vary slowly in space (Segall, 2010). Because the deformation
signal of interest and tropospheric noise are both spatially coherent, the phase vec-
tors of two nearby PS pixels are expected to be similar (e.g. with phase similarity
> (.5). By contrast, the similarity score of a decorrelated pixel (a non-PS pixel)
and a nearby pixel is ~0 when the total number of SAR acquisitions K is suffi-
ciently large. This is because the phase of a decorrelated pixel can be considered as
arandom value between 0 and 27 (Zebker and Villasenor, 1992).

It is computationally expensive to calculate the phase similarity between all radar
pixel pairs. To improve computational efficiency, a set of PS candidate pixels can
be selected using an existing PS selection algorithm such as the maximum likeli-
hood estimation (MLE) selection method (Shanker and Zebker, 2007). Following
Shanker and Zebker (2007), the received echo from a radar pixel can be modeled as
a coherent sum of returns from a dominant scatterer and clutter scatterers, and both
components are considered as circular complex Gaussian random variables. The
relative power of the dominant scatterer signal to the background clutter noise is
defined as the signal-to-clutter ratio (SCR; ). Based on this model, the probability
density function (PDF) of the observed InSAR phase ¢ for a given SCR y can be

written as:
1-p? 1  COS @ arccos(—p cos @)
plely) = ——— |1+ (10.22)
2r 1-p*cos’ V1= p%cos? ¢

where p is defined as p=1/(1 +y~!). A PS pixel has a high SCR and a relatively
narrow phase distribution, while a non-PS pixel has a low SCR and a relatively
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10.6 Persistent Scatterer Algorithms 163

wide phase distribution. The SCR value ym1,», at a given pixel m is estimated by
comparing the observed InSAR phase vector ¢,, to Equation 10.22 in a maximum
likelihood sense:

K-1

YML,m = arg max HP(‘ﬁm,kl)’) (10.23)
k=1

where @, x is the residual phase at pixel m in the k™ interferogram after removing
the spatially correlated phase component through filtering. PS candidates are cho-
sen as the pixels with ymp, , > 2. This threshold value was suggested by previous
SCR-based PS selection studies (Shanker and Zebker, 2007; Huang and Zebker,
2019; Adam et al., 2003; Chen et al., 2017) as a reasonable trade-off between the
false positive and false negative rates. A higher ¥, value leads to a lower false
positive rate and a higher false negative rate.

During the preliminary PS candidate selection, the SCR value at each pixel is
estimated independently. The spatial phase consistency between PS pixels is not
taken into account, which may lead to inaccurate PS selections (Chen et al., 2017).
To overcome this limitation, the false positive PS pixels in the current PS candi-
dates pool are removed if their median cosine similarity score to their N nearest
neighbor PS candidates is lower than a user-defined threshold. To further recover
false negatives in the preliminary PS candidate pool, the phase similarity of every
non-PS pixel m with its N nearest neighbor PS pixels is also calculated, and the
pixel m is selected as a new PS if the maximum phase similarity is greater than a
user-defined threshold. The search of false negative PS pixels is performed itera-
tively to expand the PS set, and the number of PS pixels increases monotonically
through iterations. Because the number of detected PS pixels is upper-bounded by
the total number of radar pixels, our algorithm is guaranteed to terminate when no
more PS pixels can be identified through additional iterations. Because the phase
vectors of two non-PS pixels are unlikely to be similar when the number of SAR
acquisitions is sufficiently large (e.g., K > 30), the search for false negatives typi-
cally introduces very few false positive PS pixels. More discussion on the similarity
threshold selection can be found in Wang and Chen (2022).

Once PS pixels are identified, an adaptive spatial interpolation can be employed
between PS pixels (Chen et al., 2015) to reconstruct spatially coherent phase obser-
vations (including deformation signals and tropospheric noise). Given a wrapped
interferogram, the phase value at pixel m is replaced by the weighted average phase
value of its N nearest neighbor PS pixels as:

om=P = arg( > wnei‘p") (10.24)

neNN(m,N)
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Figure 10.9 (a) 672-day Sentinel-1 interferogram (January 3, 2018—November 6,
2019) over the Greater Houston area (100-m pixel spacing). (b) Same interfer-
ogram with an additional 10 looks in both dimensions (1 000-m pixel spacing).
(c) Interpolated interferogram using PS pixels identified by the phase similarity
algorithm. (d) Interpolated interferogram using PS pixels identified by the MLE
algorithm. From Wang and Chen (2022).

where arg(z) is the argument of the complex number z, NN(m, N) represents the N
nearest neighbor PS pixels of pixel m, and ¢, is the wrapped phase value at pixel
n.w,=e" nl 2R where r, is the distance between the center pixel m and pixel n and
R =maxr,.

Thg PS interpolation method can not only fill the spatial gaps in high-quality
InSAR phase measurementsi (Figure 10.9) but also substantially improve the accu-
racy and computational efficiency of phase unwrapping (Chen and Zebker, 2001).
Additionally, PS interpolation can be used to evaluate the accuracy of PS selection.
While accurate PS selection usually results in spatially smooth phase reconstruc-
tion, interpolation from inaccurate PS sets can cause abrupt phase changes near
false positive PS pixels. Such phase artifacts can be easily identified through visual
inspection or quantified by the phase unwrapping error at a radar pixel m defined as:

= > 1A@ulfr (1A@mnl) (10.25)

n
where Ag,,, is the unwrapped phase difference between pixel m and pixel n (or
e T A N being an indicator function such that f;(x) =1 if x> 7 and

Jfz(x) =0 otherwise. The summation is performed on the four adjacent pixels of the
center pixel m. The total phase unwrapping error of an interferogram is calculated
as the sum of the phase unwrapping errors over all radar pixels.
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10.7 Problems

1. An ice stream has a typical velocity of 2 m per year and was imaged by a C-
band radar with a 12-day cadence. Why would the pixel offset tracking method
provide better results than standard interferometry?

2. Derive Equation (10.4). Consider the relation between the squint angle and the
corresponding Doppler caused by the moving platform.

3. What are the limitations of CSS? Consider a few scenarios in which such a
technique fails to produce a valid estimate of atmospheric phase screens. One
example is very strong atmospheric noise on two consecutive observation dates.

4. What complementary approach is best for measuring deformation in an area that
is highly decorrelatead?

5. Create a synthetic deformation time series with a linear deformation signal of 1
cm/year. The first synthetic SAR scenes are acquired on day 0 and then every
12 days for a year. At each SAR acquisition, add a random Gaussian noise with
a zero mean and standard deviation of 1 cm. Generate all possible InSAR pairs
as your synthetic InSAR data at a pixel location. Using stacking and SBAS
algorithms to solve for the deformation rate. Comment on the statistics of the
estimation error based on 1 000 synthetic InSAR data vectors with different ran-
dom noise samples. Now repeat the experiment with different set ups (e.g.,
6-day revisit cycle or different noise levels) and comment on the results. If
interferograms with a temporal baseline longer than 24 days are completely
decorrelated, what is the impact on the results?
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