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Abstract

In this paper we prove a realizability theorem for Quinn’s mapping cylinder obstructions for stratified
spaces. We prove a continuously controlled version of the s-cobordism theorem which we further use to
prove the relation between the torsion of an h-cobordism and the mapping cylinder obstructions. This
states that the image of the torsion of an h-cobordism is the mapping cylinder obstruction of the lower
stratum of one end of the h-cobordism in the top filtration. These results are further used to prove a
theorem about the realizability of end obstructions.
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1. Introduction

In [19, p. 405], and [21, p. 447], Quinn introduces the notion of the mapping
cylinder neighborhood as a homotopical substitute for the normal bundle. He uses
controlled algebra to prove that, for a locally compact absolute neighborhood retract
pair (X, A), such that A is closed and tame in X and X − A is a manifold, there is a
single obstruction for A having a mapping cylinder neighborhood in X ; it is denoted
q0(X, A) ∈ K̃ lf

0 (A, pX ). We will review the terminology in more detail below.
Connolly and Vajiac [8] proved an end theorem for stratified spaces. The main

result of [8] states that there is a single K -theoretical obstruction to completing a
tame-ended stratified space. We will state the main result below. For more details
on the terminology and notation we refer the reader to [8].

THEOREM 1.1 (Main theorem of [8]). Let X be a tame-ended stratified space. Define
γ∗(X), the obstruction to completing, as a direct sum of obstructions (one for each
stratum) by localizing Quinn’s mapping cylinder obstruction near infinity:

γ∗(X)=
⊕

m
γm(X) ∈

⊕
m

K lf
0 ((X̂

m−1, pX̂m )(∞)).
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Assume that γ∗(X)= 0. Let A be any pure subset of X, containing X5, such that A
is the interior of a compact stratified space Ā. Then X is the interior of a compact
stratified space X̄ such that Cl X̄ (A)= Ā.

The main result of this paper is Theorem 6.1 below. It proves a formula that relates
the torsion of an h-cobordism to the mapping cylinder obstructions.

THEOREM (Theorem 6.1). Let (X, B) be relative manifold (see Definition 3.1). Let
W be an h-cobordism of relative manifolds, from (X, B) to (Y, B). Let τ ∈Wh(X, B)
be the element represented by W . Then

1(τ)= r∗q0(W, B)− q0(X, B). (∗)

The map r∗ : K̃0(B, pW )→ K0(B, pX ) is the isomorphism induced by the retraction
r from W to X .

We would like to point out that this formula is also given in the work of Quinn [21].
We hope that our approach, which is different than the one just mentioned, makes this
formula more transparent, and thus can be readily used in applications. An immediate
corollary of this result is a realizability theorem for mapping cylinder obstructions (see
the corollary below and also Section 6). It realizes every element of K̃0(B, p), which
is in the kernel of the assembly map.

COROLLARY (Corollary 6.7). Let X be a compact stratified space, so that its singular
stratum, B, has a mapping cylinder neighborhood in X. Let x ∈ Ker(a), where a is
the forget-control assembly map

K̃0(B, pX )
a
−→ K̃0(Zπ1(X − B)).

Then there exists a stratified space Y , so that the singular stratum of Y is
homeomorphic to B and the mapping cylinder obstruction of B in Y is given
by q0(Y, B)= i(x). The map i : K̃0(B, pX )→ K̃0(B, pY ) is an inclusion-induced
isomorphism.

Another important result that follows from the proof of Theorem 6.1 is the fact
that the mapping cylinder obstruction is a simple homotopy invariant, in the following
sense.

COROLLARY 1.2. Let X and Y be n-dimensional (compact) stratified spaces, n > 6,
and let f : X→ Y be a stratified simple homotopy equivalence. Then

q0(Y, σY )= f∗(q0(X, σ X)),

where f∗ : K̃0(σ X, pX )→ K̃0(σY, pY ) is the isomorphism induced by f .

It also proves the simple homotopy invariance of the obstruction to completing a
stratified space, γ∗(X) (see [8] for details on the obstruction γ∗(X)).
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COROLLARY 1.3. Let X and Y be n-dimensional stratified spaces, n > 6, and let
f : X→ Y be a stratified proper homotopy equivalence. Assume that the torsion of
f is compact, that is to say τ( f ) ∈ Im(ι), where ι :Wh(X)→Whlf(X) is the map
induced by inclusion. Then

γ∗(Y )= f∗(γ∗(X)),

where f∗ :
⊕

m K lf
0 ((X̂

m−1, pX̂m )(∞))→
⊕

m K lf
0 ((Ŷ

m−1, pŶ m )(∞)) is the isomor-
phism induced by f .

The structure of this paper is as follows. In Section 2 we give the basic definitions
of the theory of geometric modules. We recall the basic properties and provide
a treatment of the continuously controlled K -theory, which will be used later. In
Section 3 we prove a continuously controlled s-cobordism theorem.

THEOREM 1.4 (Theorem 3.2). Let (W, A) be an h-cobordism of relative manifolds
from (X, A) to (Y, A), of dim(W − A)> 5. Then the triple (W, X, A) specifies an
element τ(W, X, A) ∈Wh(X, A) such that the map ψ : hCob(X; A)→Wh(X, A)
given by ψ((W, X, A))= τ(W, X, A) is a bijection.

Note that there are different ‘controlled’ versions of the s-cobordism theorem,
depending on the type of control used. See, for example, the work of Pedersen [15]
for a bounded version.

In Section 4 we recall the definitions of the controlled obstructions and the
controlled K̃0-groups of Quinn. Our definitions are very explicit, and are based on
the algebraic approach of Ranicki and Yamasaki [24].

Section 5 describes the construction of the boundary map 1 in the exact sequence
of [1]:

· · · −→Wh(X, B)
1
−→ K̃0(B, p)

a
−→ K̃0(Zπ1(X − B))−→ · · · .

Here X is a topological space and B is a metric space which is closed and forward
tame in X . We do not use the full sequence; we only need exactness at K̃0(B, p). We
give an argument for this fact in Proposition 5.8. The analogy between the boundary
map from [1] and our description is not pursued here.

2. On geometric modules and K -theory

The goal of this section is to introduce the reader to the theory of geometric
modules. Geometric modules were first introduced by Connell and Hollingsworth in
1969 [7] and extensively developed and used by Quinn in his work on the ends of maps
[18–20]. Since the literature is not standard, we present in this paper a self-contained
account.

We define the homotopy category of finite geometric modules on a topological
space X as a certain additive category, Ad Z[5(X)], where 5(X) denotes the
fundamental groupoid of the space X .
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2.1. The categorical constructions Z[C], Ad C In any category C, we denote by
|C| the objects of C and by C(y, x) the set of morphisms from x to y. An Ab-category
is a category C in which, for any two objects, C(y, x) forms an abelian group, and
composition is a Z bilinear map. If in addition C has a zero object, and if the direct
sum and product of any two objects of C exist and coincide in C, then C is called an
additive category.

Any category C embeds in an Ab-category, Z[C], with the same objects as C,
so that the functor C→ Z[C] is universal with respect to functors from C to Ab-
categories. The morphism group, Z[C](y, x), for any two objects x, y of C is defined
to be Z[C](y, x)= Z[C(y, x)], the free abelian group on C(y, x). The composition
on C obviously extends to a bilinear composition on Z[C].

Any Ab-category C embeds in an additive category, denoted Ad C, the additive
closure of C. An object of Ad C is a pair (S, j), where S is a finite set and j : S→ |C|
is a function. A morphism f in Ad C, from (T, k) to (S, j), is an S × T matrix
( f t

s )(s,t)∈S×T such that f t
s ∈ C( j (s), k(t)) for every (s, t) ∈ S × T . Composition is

defined via matrix multiplication. Any one-point set provides a categorical embedding,
C→ Ad C. The empty set gives a zero object for Ad C. The disjoint union of two
finite sets yields a product of any two objects of Ad C.

For more details on these constructions, see [12, p. 194].

2.2. The category G(X) of geometric modules on a space X Let X be a topological
space. Denote the set of Moore paths from a point x0 to a point x1 by P(X)(x0, x1).
The points of X can be considered as the objects of a category, P(X), in which
P(X)(x0, x1) is the set of morphisms from x1 to x0. Multiplication of paths provides
the composition law.

Let 5(X) denote the fundamental groupoid of X . More precisely, objects of 5(X)
are points of X ; the morphisms from x1 to x0 are the homotopy classes of paths from
x0 to x1. There is a quotient functor j : P(X)→5(X) sending each object to itself.

Let H(X) denote the category whose objects are the points of X , and in which
a morphism from x1 to x0 is a homotopy with endpoints fixed between two Moore
paths from x0 to x1. The category H(X) comes equipped with two functors, ∂0, ∂1 :

H(X)→ P(X), sending a homotopy to its initial and terminal paths, respectively.
Note that j : P(X)→5(X) is the coequalizer of the two functors ∂0, ∂1 : H(X)→
P(X) (according to [12, p. 64]).

DEFINITION 2.1. The category of finite geometric modules on X is defined as

G M(X)= Ad Z[P(X)].

The homotopy category of finite geometric modules on X is defined as

G(X)= Ad Z[5(X)].

The category of geometric homotopy relations on X is defined as

GH(X)= Ad Z[H(X)].
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These three categories all have the same objects M = (S, j); we call them (finite)
geometric modules on X . For any two geometric modules M , N on X , we obtain an
exact sequence of morphism groups:

GH(X)(N , M)
∂1−∂0
−→ G M(X)(N , M)

j
−→ G(X)(N , M)→ 0.

So G M(X)
j
−→ G(X) is the coequalizer of the two functors:

GH(X)
∂1,∂0
−→ G M(X).

PROPOSITION 2.2. For any path-connected pointed space (X, x0), G(X) is equiva-
lent to the category FZ[π1(X,x0)] of finitely generated free modules over Z[π1(X, x0)].
To see this, let C be any small category in which each morphism is an isomorphism,
and any two objects are isomorphic. Then C is equivalent to the full subcategory, say
π , spanned by one object x0 of C. This equivalence induces an equivalence Ad Z[C] ≈
Ad Z[π ]. When C=5(X), X path-connected, we get Z[π ](x0, x0)= Z[π1(X, x0)],
so Ad(Z[π ])= FZ[π1(X,x0)]. Therefore, G M(X)≈ FZ[π1(X,x0)].

(Quinn [22] proves this when X is semilocally 1-connected.)

2.3. Continuously controlled K -theory We define the K -theory of a pair (X, B)
using the continuously controlled theory of [2].

A category over a topological space X , is a category C, together with a function,
supp, assigning to each morphism, σ , in C a compact set, supp(σ )⊂ X , such that
supp(σ ◦ τ)⊂ supp(σ ) ∪ supp(τ ).

If also C is an Ab-category, and supp(σ + τ)⊂ supp(σ ) ∪ supp(τ ) and supp(σ )
= ∅ if and only if σ = 0, we call C an Ab-category over X . The support of an object
x ∈ |C| is defined as supp(x)= supp(1x ).

If C is a category over X , and supp(σ ) 6= ∅ then Z[C] is an Ab-category over X in
a natural way: the support of any morphism in Z[C] , say σ =

∑k
i=1 niσi , where each

σi is in C, is defined to be the union of the supports of those σi for which ni 6= 0.

DEFINITION 2.3. Let B be a subspace of X . A collection, {Sλ | λ ∈3}, of compact
subsets of X − B is continuously controlled (cc) over (X, B), if:

(1) for each X -neighborhood U of B, {λ ∈3 | Sλ 6⊂U } is a finite subset of 3;
(2) for each point p ∈ B and each X -neighborhood U (p), there is an

X -neighborhood V (p) so that any set Sλ meeting V must lie in U .

EXAMPLES 2.4.

(i) A cc-collection over (X, ∅) is a finite collection.
(ii) Let X̂ be the one-point compactification of an arbitrary topological space X . A

collection S = {Sλ | λ ∈3} of compact subsets of X is a cc-collection over (X̂ ,∞) if
and only if S is a locally finite collection on X (that is, each compact set of X meets
only finitely many members of S ).

https://doi.org/10.1017/S1446788708000487 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000487


254 B. Vajiac [6]

(iii) Let B be a closed subset of a space X . Then B̂ ⊂ X̂ and X − B = X̂ − B̂. Let
S = {Sλ | λ ∈3} be a collection of compact subsets of X − B. For each compact set
K ⊂ X , write 3K for {λ ∈3 | Sλ ∩ K 6= ∅}, and SK

= {Sλ | λ ∈3K
}. Then we see

that S is a cc-collection over (X̂ , B̂) if and only if for each compact set K ⊂ X , S K is
a cc-collection over (X, B ∩ K ).

We will now define the category of locally finite geometric modules, and the
geometric modules of a pair (X, A). The constructions are similar to those for finite
geometric modules.

Let B be a subset of the space X , and C an Ab-category over X − B. We define
an additive category, Ad(X,B)C, containing Ad C, called the additive closure of C over
(X, B). An object of Ad(X,B)C is a pair (S, j) where S is a set, and j : S→ |C| is a
function for which the indexed collection {supp( j (s)) | s ∈ S} is a cc-collection over
(X, B). A morphism f = ( f s

t )(s,t)∈S×T is defined as for Ad C except that we require
{supp( f s

t ) | (s, t) ∈ S × T } to be a cc-collection over (X, B). In particular, then, the
matrix is row and column finite.

If C is an Ab-category over X , the locally finite additive closure, Adlf C, is defined
as Ad

(X̂ ,∞) C. The objects are pairs (S, j), where S is a set, and j : S→ |C| is a
function such that {supp( j (s)) | s ∈ S} is a locally finite collection.

Note that Ad C, Adlf C, and Ad(X,B) C are functorial in C and also that Ad(X,∅) C
= Ad C.

DEFINITION 2.5. The category of locally finite geometric modules on X is

G M lf(X)= Adlf Z[P(X)].

An object M = (S, j) of G M(X) is called a locally finite geometric module on X . We

set GHlf(X)= Adlf Z[H(X)]. We again get two functors GHlf(X)
∂1,∂0
−→ G M lf(X).

More generally, let B be a subset of X . The category of cc-geometric modules
and morphisms over (X, B) and the category of cc-geometric homotopy relations on
(X, B) are defined as

G M(X, B)= Ad(X,B) Z[P(X − B)], GH(X, B)= Ad(X,B) Z[H(X − B)].

An object M = (S, j) of G M(X, B) is called a geometric module on (X, B).
We define the homotopy category of cc-geometric modules and morphisms denoted
G(X, B), and a functor j : G M(X, B)→ G(X, B) to be the equalizer of the two

functors: GH(X, B)
∂1−∂0
−→ G M(X, B).

The categories G M(X, B), G(X, B), GH(X, B) have the same objects, and for any
cc-geometric modules M, N , we get an exact sequence:

GH(X, B)(N , M)
∂1−∂0
−→ G M(X, B)(N , M)

j
−→ G(X, B)(N , M)→ 0.

The homotopy category of locally finite geometric modules on X , is defined as

G lf(X)= G(X̂ ,∞).
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Notice that G(X, ∅)= G(X).
For two morphisms in G M(X, B), say f0, f1 : N → M , we write f0 ∼ f1 if

f1 − f0 = (∂1 − ∂0)g, for some g : N → M in GH(X, B).

DEFINITION 2.6. Let B be a subset of the topological space X . We define the groups
Ki (X, B)= Ki (G(X, B)), i 6 1, in the sense of Quillen (see [17, 26]).

If B is a closed set of X , we define the locally finite K -theory by

K lf
i (X, B)= Ki (G(X̂ , B̂)), K lf

i (X)= Ki (G(X̂ ,∞))= Ki (G lf(X)).

These additive categories are given the ‘semisimple’ exact structure: sequences

0→ M1
i1
−→ M1 ⊕ M2

p2
−→ M2→ 0 given by the natural direct sum and product, and

only sequences isomorphic to these, are decreed to be exact.
The reduced K0-groups for these categories are defined as usual: for any additive

category, K̃0(C) is defined as the cokernel of the natural map, K0(C)→ K0(Ĉ), where
Ĉ is the idempotent completion of C (see [23] for more details).

We now define the Whitehead group, Wh(X, B). A cc-morphism α of geometric
modules over (X, B) is a basis change if its matrix (αs

t )(s,t)∈(S×T ) has a single nonzero
entry of the form±σ s

t in each row and column (σ s
t is a path from k(t) to j (s)). Such a

matrix is obviously invertible. The adjoint of α is then α∗, where (α∗)ts = (α
s
t )
−1. Note

that α−1 is obviously a cc-morphism, and j (α∗)= j (α)−1. Let H be the subgroup of
K1(X, B) generated by basis change matrices. Then we define

Wh(X, B)= K1(X, B)/H, Wh(X)=Wh(X, ∅)= K1(G M(X))/H.

When X is path-connected, it is easy to see that Wh(X)≈Wh(π1(X, x0)), because
K1(G(X))≈ K1(Z[π1(X, x0)]). If B is a closed subset of X we write Whlf(X, B)
instead of Wh(X̂ , B̂), and Whlf(X) instead of Wh(X̂ ,∞). If X is a locally compact
polyhedron, then one can prove Whlf(X)=Wh∞(X), Siebenmann’s locally finite
Whitehead group [25].

The Whitehead torsion of an isomorphism in G(X, B) is defined as follows. Note
that for any two isomorphic objects M, N in G(X, B), there is a basis change
isomorphism, b : N → M . For any isomorphism f : M→ N , the Whitehead torsion
of f is defined as τ( f )= [b ◦ f ] ∈ K1(X, B)/H =Wh(X, B); it does not depend on
the choice of b. It is immediate that τ( f ◦ g)= τ( f )+ τ(g). By mimicking [24] one
can also define the group Wh(X, B, n), where n is a positive integer, as the equivalence
class of contractible continuously controlled chain complexes over G(X, B). The
equivalence relation is generated by stable 6-equivalences, in the sense of [24]. As
explained in [24], there is an isomorphism between Wh(X, B, n) and Wh(X, B), so
we will regard the class of a contractible continuously controlled chain complexes over
G(X, B) as an element of Wh(X, B).

2.4. Functorial properties The constructions G( , ), G M( , ), GH( , ) are functors
on the category of topological pairs (X, B) and stratum-preserving continuous
maps of these. A continuous map f : (X, B)→ (X ′, B ′) is stratum-preserving
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if f −1(B ′)= B. Further, G( , ) is also a homotopy functor, in the sense we
now explain. A stratum-preserving homotopy, F : X × I → X ′ between f 0, f 1

:

(X, B)→ (X ′, B ′), is a homotopy for which F−1(B ′)= B × I , and, for each a ∈
B, F(a × I ) is one point. If {Sλ | λ ∈3} is a cc-family over (X, B), and F : (X, B)×
I → (X ′, B ′) is a stratum-preserving homotopy, then {F(Sλ × I ) | λ ∈3} is a cc-
family over (X ′, B ′). This means that, for each geometric module M over (X, B), F
defines a morphism F(M) : f 0

∗ (M)→ f 1
∗ (M) in G M(X ′, B ′) such that j (F(M)) is

an isomorphism in G(X ′, B ′). In addition, if g : N → M is a morphism in G M(X, B),
F defines a morphism F(g) : f 0

∗ (N )→ f 1
∗ (M) in GH(X ′, B ′), so that f 1

∗ (g) ◦ F(N )
− F(M) ◦ f 0

∗ (g)= (∂1 − ∂0)(F(g)). This says that the correspondence M→
j (F(M)) is a natural equivalence of functors:

G(F) : G( f 0)→ G( f 1).

So G( , ) is a functor on the category of stratum-preserving homotopy classes of
stratum-preserving maps.

Now Ki ( , ) is an abelian group valued functor from the category of topological
pairs and stratum-preserving homotopy classes of continuous maps. Furthermore,
Wh( , ) is a functor on the same category because the map G( f ) : G(X, B)→
G(X ′, B ′), induced by a stratum-preserving map f : (X, B)→ (X ′, B ′), sends basis
change isomorphisms to basis change isomorphisms.

Suppose that f : (X, B)→ (X ′, B ′) is stratum-preserving, B, B ′ are closed sets,
and f : X→ X ′ is proper. Then f induces a map f∗ : K lf

i (X, B)→ K lf
i (X

′, B ′).
Moreover, f 0

∗ = f 1
∗ if there is a proper stratum-preserving homotopy from f 0 to f 1.

For the reader’s convenience, we will recall some definitions from [21].

DEFINITION 2.7 (Holink). Let A be a subspace of a topological space X . The holink
of A in X is

Holink(X, A)= {σ ∈Map([0, 1], X) | σ−1(A)= 0}.

It is given the compact-open topology. It comes with a projection map,
pX : Holink(X, A)→ A; pX (σ )= σ(0). It is also equipped with a map jX :

Holink(X, A)→ (X − A); jX (σ )= σ(1).

DEFINITION 2.8 (Forward tame). A closed set A in a topological space X is forward
tame in X if there exists a neighborhood U of A in X and a map F :U × [0,∞]→ X
such that F−1(A)= A × [0,∞] ∪U × {∞} and F(a, t)= a, for all (a, t) ∈ A ×
[0,∞].

DEFINITION 2.9 (Reverse tame). A closed set A in a topological space X is reverse
tame in X if there is a map R : (X − A)× [0,∞]→ X − A such that:
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(1) for each t ∈ [0,∞), ClX R((X − A)× [0, t])⊂ X − A;
(2) each point x ∈ X − A has a neighborhood U and a number tx ∈ [0,∞) so

that Rt |U = identity|U for all t ≥ tx (here Rt : X − A→ X − A is defined by
Rt (x)= R(x, t));

(3) R extends continuously to a map (X − A)× [0,∞] ∪ (A × {∞})→ X by
setting R(a,∞)= a, for all a ∈ A.

DEFINITION 2.10 (Tame). A closed set of X is tame if it is both forward and reverse
tame.

DEFINITION 2.11. A stratified space is a finitely filtered, locally compact Hausdorff
space (X, {X i }

n
0) such that:

(1) each stratum Xk is a k-dimensional topological manifold (possibly with
boundary);

(2) for each i < j , X i is tame in X i ∪ X j ;

(3) Holink(X i ∪ X j , X i )
p
−→ X i is a fibration, and the inclusion Holink(∂X i ∪

∂X j , ∂X i )→ Holink(X i ∪ X j , X i )|∂X i is a fiber homotopy equivalence over
∂X i .

DEFINITION 2.12. Let X be an n-dimensional stratified space without boundary. By
a completion of X we mean a compact stratified space X̄ such that X = X̄ − ∂ X̄ , and
∂ X̄ has a collar neighborhood in X̄ .

3. A continuously controlled h-cobordism theorem

The main goal of this section is to prove a version of the s-cobordism theorem in the
context of relative manifolds. The arguments below will follow those of [13, 15, 18].

DEFINITION 3.1. A relative manifold is a compact Hausdorff pair (X, A), for
which X − A is a paracompact manifold of dimension dim(X − A)> 5, possibly
with boundary. We define the boundary of a relative manifold to be the relative
manifold ∂(X, A)= (∂(X − A) ∪ A, A). Here the topology on ∂(X − A) ∪ A is
induced from X .

A cobordism of relative manifolds between (X, A) and (Y, A) is a relative manifold
(W, A) such that ∂W − A is the union of the two open sets X − A and Y − A.

An h-cobordism of relative manifolds is a cobordism (W, A) between (X, A) and
(Y, A) for which there are strict maps r t

i : (W, A)→ (W, A), 0 6 t 6 1, i ∈ {1, 2}
deforming (W, A) into (X, A) and (Y, A) respectively, by a deformation which
fixes X and Y respectively. We will denote the set of equivalence classes of h-
cobordisms on (X, A) by hCob(X; A). The equivalence relation is generated by
relative homeomorphisms (a relative homeomorphism between (X, A) and (Y, A) is
required to be the identity homeomorphism over A).

THEOREM 3.2. Let (W, A) be an h-cobordism from (X, A) to (Y, A), of dim(W −
A)> 5. Then the triple (W, X, A) specifies an element τ(W, X, A) ∈Wh(X, A) such
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that the map ψ : hCob(X; A)→Wh(X, A) given by ψ((W, X, A))= τ(W, X, A) is
a bijection.

PROOF. Let (W, A) be an h-cobordism between (X, A) and (Y, A) with strict maps
r t

i : (W, A)→ (W, A), 0 6 t 6 1, i ∈ {1, 2} deforming (W, A) into (X, A) and (Y, A)
respectively. By the results of Kirby and Siebenmann [11] one can choose a handle
decomposition of the pair (W − A, X − A); refining it, if necessary, one can assume
without loss of generality that the resulting chain complex of geometric modules, say
Ĉ(W, A), is a continuously controlled chain complex. Let C(W, A)= r1

1∗Ĉ(W, A).
C(W, A) is a contractible continuously controlled chain complex in G M(X, A),
the contraction H : Ci (W, A)→ Ci+1(W, A) being given by r1

1∗. So one defines
ψ((W, X, A))= [C(W, A)] ∈Wh(X, A). The fact that ψ is a well-defined map
follows from the homeomorphism invariance of the Whitehead torsion. It is essentially
due to Chapman (see [3, 4]). We will explain it in more detail in 3.5.

It is not difficult to notice that the torsion of an h-cobordism satisfies ‘Milnor’
duality [14, p. 394]. That is to say, for any h-cobordism of relative manifolds (W, A)
from (X, A) to (Y, A),

τ(W, Y, A)= (−1)n−1τ̄ (W, X, A).

Here n is the dimension of W − A.
The main part of the proof is the injectivity of ψ . We will establish it first.
Suppose that τ(W, X, A)= 0. One has to find a relative homeomorphism 8 :

(X × I, A × I )→ (W, A), so that 8 is stationary along A. This amounts to showing
that one can eliminate all the handles in the above handle decomposition. Recall that
a handle decomposition consists of a collar along X − A together with collections of
j-handles {e j

i , i ∈ Z+}, 0 6 j 6 dim(W − A). We will discuss separately the process
of eliminating the 0- and 1-handles:

3.1. 0-Handles Let H0
= {e0

i , i ∈ Z+} be the collection of 0-handles. Each 0-handle
of (W, X) can be connected to the collar on X − A by a finite sequence of alternating
0- and 1-handles. Choose for every 0-handle e0

k a sequence of 0- and 1-handles,
say K (e0

k) connecting e0
k to the collar. A collar means a neighborhood of X in

W homeomorphic to the space (X − A)× I ∪ A; the topology on this space is the
quotient topology making the map X × I → X × I/{(a, t)≡ (a, 0)} continuous. We
will further denote the space (X − A)× I ∪ A with the above described topology by
X ×λ I . One can make the choice in such a way that the number of handles in each
K (e0

k) is minimal; it is obvious that K (e0
k) is a compact set, for every k ∈ Z+, and

the collection K = {K (e0
k) | e

0
∈H0
} is a continuously controlled family. By deleting

some of the 0-handles, if necessary, we can assume that no element of K is contained
in any other. The goal is to write K as a disjoint union of sets of the form K (e0

k),
which can subsequently be absorbed in the collar. The argument is similar to that
in [15, 18]. If K (e0

k) and K (e0
l ) share a common 1-handle we subdivide, replacing

it by two parallel 1-handles and a new 2-handle. This process eventually guarantees
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that no two elements of K share a common 1-handle. If K (e0
k) and K (e0

l ) share a
common 0-handle, we subdivide, replacing it by two 0-handles connected by a new
1-handle. So one can assume that K (e0

k) ∩ K (e0
l )= ∅. It is obvious that K is still a

continuously controlled family, and that every 0-handle lies in one of the sets K (e0
k).

One can then absorb the disjoint sets {K (e0
k)} into the collar along X − A, getting a

handle decomposition with no 0-handles. By duality one can remove the n-handles as
well; here n = dim(W − A).

3.2. 1-handles By the previous paragraph we may assume that all the 1-handles are
trivially attached. We will follow Milnor’s argument to eliminate the 1-handles [13,
Chapter 8]. Let e1

α be a 1-handle in the decomposition of (W, X), and let Uα be any
open neighborhood of e1

α . One can construct an embedding of S1 in Uα whose image S
intersects the right-hand sphere Sn−2(e1

α) transversely at one point. It is easy to see that
one can introduce a pair of canceling 2- and 3-handles in Uα , so that the boundary of
the 2-handle is just S. We then cancel the 1-handle with the newly attached 2-handle.
The process is local, the newly introduced 2- and 3-handles also form a continuously
controlled family. In conclusion, one can eliminate all the 1-handles in the handle
decomposition of (W, X). Likewise, by duality one can assume that we have also
eliminated all the (n − 1)-handles. Because n > 5, this will not create new 1-handles.

3.3. k-handles Suppose we have eliminated all the handles of dimension
0, 1, . . . , k − 1, where k > 2 and 2k + 1 6 n. We will show that one can trade the k-
handles for (k + 2)-handles. The argument follows closely those of [6, 10, 13, 15, 18].
The homotopy Hk : Ck(W, A)→ Ck+1(W, A) is a left inverse for ∂k+1. We introduce
again the cancelation of pairs of (k + 1)- and (k + 2)-handles in a neighborhood of
every k-handle, and use the change of basis theorem (see [13] or [10]) in order to
modify the boundary map ∂k+1; the geometric moves are prescribed by the map
Hk , which is continuously controlled, so after using the Whitney trick one can
cancel the k-handles with the newly attached (k + 1)-handles and still get a cc-handle
decomposition. In fact the algebraic moves are the same as for 1-handles, the only
difference being the absence of the Whitney trick for 1-handles. Note that the Whitney
isotopies are obviously continuously controlled. By induction one can then assume
that the handle decomposition is concentrated in two adjacent dimensions, say k and
k + 1. So Hk and ∂k+1 are inverses.

We will use the vanishing of τ(W, X, A) at this point. It implies that after
stabilization (that is, after introducing mutually canceling k and (k + 1)-handles),
the matrix of ∂k+1 is a finite product of deformations (a deformation is a product of
elementary matrices and geometric isomorphisms). Algebraically, one can change the
base of C(W, X), so that ∂k+1 becomes the identity. It is obvious that the algebraic
moves can be realized geometrically; moreover, the Whitney trick and the cancelation
theorem allows us to cancel each k-handle with the corresponding (k + 1)-handle. In
conclusion, one can absorb all the handles in the collar along X . The h-cobordism
then becomes a product cobordism, so ψ is injective.
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The proof that the map ψ : hCob(X; A)→Wh(X, A) is surjective is quite easy.
Each element of Wh(X, A) can be represented by a contractible chain complex of
geometric modules C, so that Ci = 0, for all i 6= 2, 3. For each basis element of C2,
we trivially attach a 2-handle to X ×λ I ; hence the geometric module formed by the
2-handles is just C2. We will then attach the 3-handles according to the instructions
given by the continuously controlled boundary map ∂ : C3→ C2. This gives us an
h-cobordism (W, A) from (X, A) to a relative manifold (Y, A) such that the torsion
τ((W, X, A)) is just [C].

LEMMA 3.3. In the above notation, if X is a stratified space with singular set A and
(W, A) is an h-cobordism of relative manifolds from (X, A) to (Y, A), then both W
and Y are stratified spaces, so that A is the singular set of Y , and W contains X and
Y as pure subsets.

PROOF. The verification of the definition is simple: the h-cobordism deformation
provides both the holink and the tameness condition. 2

3.4. Additivity This is standard. Let (W, A) be an h-cobordism from (X, A) to
(Y, A). Let (W1, A) be an h-cobordism from (Y, A) to (Y1, A). The retraction
ρ : Y → X induces a map ρ∗ :Wh(Y, A)→Wh(X, A). Then (W1 ∪Y W, A) is an
h-cobordism from (X, A) to (Y1, A). Moreover,

τ(W1 ∪Y W, A)= τ(W, A)+ ρ∗τ(W1, A).

The proof of the theorem is now complete. 2

An important consequence of the theorem is the following result.

COROLLARY 3.4 (Invertibility of relative h-cobordisms). Given any h-cobordism of
relative manifolds (W, A) from (X, A) to (Y, A) there is an h-cobordism (W ′, A)
such that τ(W ′ ∪Y W, A)= 0.

The h-cobordism theorem for relative manifolds implies a similar theorem for
stratified spaces. More precisely, for a stratified space X , define hCob(X, σ X) to
be the set of h-cobordisms on X which admit a product structure along σ X .

THEOREM 3.5. Let W be a stratified h-cobordism between the stratified spaces X
and Y . Assume that dim(W − A)> 6. Suppose that W has a product structure along
σW , that is to say, σW = σ X × [0, 1]. Then the pair (W, X) specifies an element
τ(W, X) ∈Wh(X, σ X) such that the map ψ : hCob(X, σ X)→Wh(X, σ X) given by
ψ((W, X))= τ(W, X) is a bijection.

PROOF. This is an easy consequence of Theorem 3.2 and Quinn’s collaring theorem
(see [21, p. 492]). Here are the details. W is a stratified space and ∂W contains Y
as an open and closed subset. Moreover, σY has a collar in σW , by assumption.
According to the lemma [21, p. 492] this collar can be extended to a collar of Y in
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W , say c : Y × [0, 1] →W , so that c(Y × 0)= Y . Now W − c(Y × [0, 1)) is an h-
cobordism of relative manifolds. The theorem follows now from the corresponding
one for relative manifolds. 2

3.5. The topological invariance of the Whitehead torsion We need to prove that, if
f : (X, A)→ (Y, A) is a homeomorphism of relative manifolds (that is, f −1(A)= A
and f |A = 1A), then τ( f )= 0 as an element in Wh(Y, A). This statement will follow
from the following version of the α-approximation theorem, which is essentially due
to Chapman [4].

THEOREM 3.6 [4, Theorem 1]. Let Y be a locally compact polyhedron and β an open
cover of Y . Then there exists another open cover of Y , α, so that if X is a locally
compact polyhedron and f : X→ Y a proper map which is an α-equivalence, then f
is a β-simple homotopy equivalence.

REMARKS 3.7.

(1) A map f : X→ Y is a β-simple homotopy equivalence if there exist a locally
compact polyhedron Z and cell like piecewise linear proper maps

X
g1
←− Z

g2
−→ Y,

so that f g1 is β homotopic to g2.
(2) Chapman’s proof is an inductive argument using the compact version of the

α-approximation theorem. In fact, he does not keep track of the size of the
simple homotopy, but if one replaces [4, Theorem 8.1] by the ε-δ approximation
theorem (see [5] or [24]) the same argument applies to give the desired result.
For completeness, here is the statement of the ε-δ approximation theorem
phrased in terms of ‘relaxing control’ in the Whitehead groups [5, 24].

THEOREM 3.8. For any compact polyhedron K and any ε > 0 there is a δ > 0
such that the stabilization map

Wh(K , 1K , δ)−→Wh(K , 1K , ε)

is the zero map.

The topological invariance can also be proved using a controlled approach similar
to that of Kirby and Siebenmann [11, p. 117]. In this approach a simple homotopy
equivalence will be a composition of expansions and inverses of expansions; it is
necessary only to keep track of their sizes.

4. Finiteness obstructions

Let us now briefly recall the definitions of the controlled K̃0-groups, and of the
controlled finiteness obstruction. The groups K̃0(B, p) were introduced by Quinn
in [19]. We follow the more algebraic approach of [22, 24].
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4.1. The definition of K̃0(B, p) Let p : E→ B be a continuous map from a
topological space to a locally compact metric space, and let δ : B→ (0,∞) be a
continuous map. We say that a subset S ⊂ E is a δ-subset if p(S) lies in the δ(p(x))
ball around p(x), for each x ∈ S. A morphism f = ( f s

t )(s,t)∈S×T in G M lf(E),
or GHlf(E), is a δ-morphism if supp( f s

t ) is a δ-subset for each (s, t). We write
GHlf(E; δ) for the δ-morphisms in GHlf(E).

G M lf(B, p) (GHlf(B, p)) is defined as the subcategory of G M lf(E) (GHlf(E))
consisting of all objects M = (S, j), such that p(M)= (S, pj) is an object of
G M lf(B), and all morphisms f = ( f s

t )(s,t)∈S×T such that p( f )= (p f s
t )(s,t)∈S×T is

a morphism of G M lf(B) (GHlf(B)). If, in addition, f is a δ-morphism we say that f
is in G M(B, p, δ), (GH(B, p, δ)).

The δ-morphisms in G M lf(B, p)(N , M) form a subgroup, which we denote by
G M lf(B, p; δ)(N , M). The composition f g of a δ-morphism and a δ′-morphism
is a (δ + δ′)-morphism. We say that f, g ∈ G M lf(B, p)(M, N ) are δ-homotopic
( f ∼δ g) if there is an h ∈ GHlf(B, p, δ)(M, N ) for which f − g = (∂1 − ∂0)(h).
Following [24], we say that a δ-projective module is a pair (M, e), where
M ∈ |G M lf(B, p)|, e ∈ G M lf(B, p)(M, M), and e2

∼δ e. A δ-isomorphism between
two of these, say (M, e), (M ′, e′), is a pair of δ-morphisms f : M→ M ′,
g : M ′→ M , such that f g ∼δ e′, g f ∼δ e, e′ f ∼δ f ∼δ f e, eg ∼δ g ∼δ ge′. A stable
δ-isomorphism from (M, e) to (M ′, e′) is a δ-isomorphism from (M ⊕ X, e ⊕ 1X )

to (M ′ ⊕ X ′, e ⊕ 1′X ) for some X, X ′ ∈ |G M lf(B, p)|. The paper by Yanicki and
Yamasaki [24, proof of Theorem 1.4] shows that if two δ-projective modules,
(M, e), (M ′, e′), are equivalent under the equivalence relation generated by stable
4δ-equivalence, then (M, e) and (M ′, e′), are stably 6δ-isomorphic. The set of all
equivalence classes of δ-projective modules on (B, p) under the equivalence relation
generated by stable 4δ-equivalence is an abelian group, written K̃ lf

0 (B, p; δ).
Now, by similarly mimicking the steps in [24], one defines K̃ lf

0 (B, p; n, δ) as the set
of equivalence classes of δ-projective chain complexes of geometric modules, where
the chain complexes, C , satisfy Ci = 0, unless 0≤ i ≤ n. The equivalence relation is
generated by stable 4δ-chain equivalence. Just as in [24, Proposition 1.7], there is an
Euler characteristic map

χ : K̃ lf
0 (B, p; n, δ)→ K̃ lf

0 (B, p; 9δ),

so that the composite map

K̃ lf
0 (B, p; δ)

i
→ K̃ lf

0 (B, p; n, δ)
χ
→ K̃ lf

0 (B, p; 9δ)

is induced by the inclusion G M(B, p; δ) ↪→ G M(B, p; 9δ). Here i is the map
sending a module M to the n-dimensional complex, concentrated in degree 0, which
M determines. Note that i is an epimorphism (see [24, Section 1.6]).

DEFINITION 4.1. We define K̃ lf
0 (B, p) as lim

←−δ
K̃ lf

0 (B, p; δ), as δ ranges over the
continuous functions δ : B→ (0,∞). It is clear that, if B is compact, ε and δ can
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be chosen to be positive real numbers. The corresponding groups will then be denoted
by K̃0(B, p).

Let B be a compact metric space. The negative controlled K groups of (B, p) are
defined in a standard way:

K̃−i (B, p)= K̃ lf
0 (B × Ri , p × 1Ri ).

(Compare [16] and [24].)

In the last part of this section we will review the definition of Quinn’s controlled
finiteness obstruction.

4.2. The projective obstruction of a finitely dominated complex Let p : E→ B
and δ : B→ (0,∞) be as before. Let C be a δ-chain complex over G M lf(E) such
that (C, 1) is δ-homotopy equivalent to an n-dimensional projective δ-chain complex,

(D, e), over Ĝ M
lf
(B, p). The class

qδ(C)= χ([D, e]) ∈ K lf
0 (B, p; 9δ)

depends only on C and is called the controlled finiteness obstruction of C over B.
Suppose C is an n-dimensional δ-chain complex over G M lf(E) which is

δ-dominated by a δ-chain complex over G M lf(B, p). In [24, Section 3.1] it is shown
that (C, 1) is ε-chain equivalent to an n-dimensional ε-projective ε-chain complex,

(D, e), over Ĝ M
lf
(B, p). Here ε = (2n + 4)δ.

LEMMA 4.3. Let 0→ C ′
i ′
−→ C

i ′′
−→ C ′′→ 0 be an exact sequence of δ-chain

complexes over G M lf(E). Assume that (C, 1), (C ′, 1), (C ′′, 1) are δ-homotopy
equivalent to n-dimensional projective δ-complexes over the idempotent completion

Ĝ M
lf
(B, p). Then

qε(C)= qε(C
′′)+ qε(C

′) (ε = 5δ).

PROOF. The mapping cylinder and mapping cone of a δ-chain map between
δ-complexes are 3δ-chain complexes. Using the hypotheses and standard mapping
cylinder arguments (see Proposition 5.7 for more details) leads to a commutative
diagram:

0 // (D′, e′)

'

��

ι′ //// (D, e)

'

��

ι′′ // (D′′, e′′) //

'

��

// 0

0 // (C ′, 1)
i ′ //// (C, 1) i ′′ //// (C ′′, 1) // 0

where the top row is an exact sequence of (n + 1)-dimensional ε-projective complexes

over Ĝ M
lf
(B, p), and the vertical maps are ε-homotopy equivalences over Ĝ M

lf
(E).

Here ε = 5δ. The construction of the top row goes as follows. First choose D′ and
D arbitrarily; the map ι′ can be defined so that the diagram involving ι′ and i ′ is
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commutative. By passing to the mapping cylinder of the map i ′ one can assure that D
is the mapping cylinder of i ′. Then construct D′′ as the mapping cone of i ′. See also
the proof of Theorem 6.1 for more algebraic details.

By [24], χ [D, e] = χ [D′, e′] + χ [D′′, e′′], from which the result follows. 2

4.3. The controlled end obstruction A controlled end obstruction, q0(M, f ), for
any tame end (M, f ), is defined by Quinn [19, p. 410]. For the reader’s convenience,
we present the details of this definition for compact B, which is the case we use most.

DEFINITION 4.4. Let f : M→ B be a map from a manifold M with compact
boundary to a compact metric space B (an ‘end’ in the sense of [18]). Assume that
dim(M)≥ 6, and assume that (M, f ) is tame [18, Section 1.1]. Quinn defines an
obstruction q0(M, f ) as follows.

Let M = M(0)⊃ M(1)⊃ M(2)⊃ · · · be an infinite sequence of submanifolds
with compact boundaries and relatively compact complements in M . Assume that⋂
∞

k=1 M(k)= ∅. Using the tameness condition one can choose this sequence so
that M(k) deforms, relative to ∂M(k), into the set N (k)= M(k)− Int (M(k + 1)),
and the diameter of the deformation (when measured in B), is less than δ(k), where
δ(1) > δ(2) > · · · , and limk→∞ δ(k)= 0. Set f (k)= f |M(k) : M(k)→ B.

Choose a handle decomposition of (N (k), ∂M(k)) and an infinite handle
decomposition of (M(k), ∂M(k)) of diameter much less than δ(k) (when measured
in B). Let C(k)= C(M(k), ∂M(k)). The deformation above shows that C(k) is
δ(k)-finitely dominated by the finite complex C(N (k), ∂M(k)), so qε(k)(C(k)) is
defined, where ε(k)= Cδ(k), and C is a constant depending only on n. Moreover,
the sequence

0→ C(N (k), ∂M(k))→ C(k)→ C(k + 1)→ 0

is exact. Therefore by Lemma 4.3, qε(k)(C(k))= qε(k)(C(k + 1)). It follows that the
sequence

q0(M, f )= {qε(k)(C(k))}
∞

k=1,

is an element of the group limk K̃0(B, f (k), 9ε(k)).
It is not hard to imagine that K̃0(B, p)≈ limk K̃0(B, f (k), 9ε(k)) (see also [9]).

Here p is the holink projection. We will give a sketch of the proof of this fact in the
next section.

The element q0(M, f ) is called the controlled end obstruction of (M, f ).

REMARK 4.5. In [18, Ch. 7] and [19] Quinn proves that q0(M, f )= 0 if and only if
M is the interior of a compact manifold M such that f extends to a map f : M→ B.

5. The boundary map

In this section we will give an explicit description of the boundary map

1 :Wh(X, B)→ K̃0(B, p).
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This will enable us to establish formula (∗) of Theorem 6.1 which is an important tool
in the proof of the main theorems. We also conclude, using the description of 1, that
the sequence

Wh(X, B)
1
−→ K̃0(B, p)

a
−→ K̃0(Zπ1(X − B)),

is exact at K̃0(B, p).
Recall that G M(X, B) is an additive category, having G M(X − B) as a full

subcategory.

DEFINITION 5.1. A chain complex C over G M(X, B) is dominable by a complex
over G M(X − B) if there is a chain map, chain homotopic to 1C , say f = 1C − h∂ −

∂h : C→ C , and a factorization of f as a composite: C
f ′
−→ D

f ′′
−→ C where D is a

complex over G M(X − B). A domination of C will be denoted by (D, f ′, f ′′, h).

The definition of an ε-domination is straightforward (see [24]).
For each such (D, f ′, f ′′, h), Ranicki [23, pp. 119–121] constructs a chain

complex (E, q) over the idempotent completion ̂G M(X − B), together with a chain
homotopy equivalence, (E, q)' (C, 1).

This construction depends continuously on (D, f ′, f ′′, h), in the following sense.
Let an integer n and a real number ε > 0 be preassigned. There is a number δ > 0,
depending on n and ε, such that if D, f ′, f ′′, h, all have diameter less than δ, and
dim(D)≤ n, then E , q : E→ E and the homotopy equivalence (C, 1)→ (E, q) all
have diameter less than ε (see [24, Section 3.1]).

Let X be a topological space. Let B be a metric space which is closed and forward
tame in X . According to [1], there is an exact sequence

· · · −→Wh(X, B)
1
−→ K̃0(B, p)

a
−→ K̃0(Zπ1(X − B))−→ · · · .

The purpose of this section is to describe the construction of the boundary map1. We
will not prove that the description we give below coincides with the one in [1]; instead,
we will show in Proposition 5.8 why our definition of the boundary map makes this
sequence exact at K̃0(B, p). This is sufficient for our purposes.

Let ρ : N → B be a neighborhood retraction and let {ρt | N → X, 0≤ t ≤ 1} be a
homotopy, relative to B, from the inclusion N → X to ρ, such that ρ−1

t (B)= B, for
all t < 1. The adjoint of this homotopy is denoted λ : N − B→ Holink(X, B).

DEFINITION 5.2. Let C be a chain complex over G M(X, B). Let U be any
neighborhood of B in X . We will denote by C |U the largest subcomplex of C which
is supported on U . That is to say, (C |U )0 = C0, (C |U )1 is the largest subcomplex
of C1, so that the map ∂ : C1→ C0 induces a map supported on U , denoted by
∂|U : (C |U )1→ (C |U )0, etc.

DEFINITION 5.3. Let δ > 0 be arbitrary. Let U be a neighborhood of B in X . By a
restriction of C to U , say (CU , ∂U ) we mean a subcomplex of C such that:
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(1) CU is supported on U , by which we mean that CU is a subcomplex of C |U ;
(2) there is a neighborhood V ⊂U so that (CU )|V = C |V .

Note that such a subcomplex CU obviously exists, but it is not uniquely determined by
C and U .

LEMMA 5.4. Let δ > 0 be arbitrary. Let C be a chain complex over G M(X, B)
dominated by the complex D over G M(X − B). For each sufficiently small neighbor-
hood U of B, any choice of the complex CU is a δ-complex over G M(U, B), δ-
dominable (over G M(U, B)) by a δ-complex over G M(U − B). Measurements are
made in B, using the map ρ.

PROOF. Let (D, f ′, f ′′, h) be a domination of C by a complex over G M(X − B).
For all U sufficiently small, the continuous control condition ensures that CU is a
δ-complex and f |CU , f ′|CU , h|CU are δ-maps.

Let πU : C→ CU , and iU : CU → C be the projection and inclusion maps,
respectively. Note that πU is not a chain map; it is only a map of graded groups. Now
introduce the chain homotopy hU = πU hiU : CU → CU , a δ-map. By the continuous
control condition, there is a smaller neighborhood V of B, so that hU |CV = h|CV ,
∂U |CV = ∂|CV and f ′|CV = 0.

Set fU = 1CU − hU∂U − ∂U hU : CU → CU . Then fU is a 2δ-map which is chain
homotopic to 1CU by definition. Also fU |CV = (1− hδ − δh)|CV ∼4δ f ′′ f ′|CV = 0,
because f ′|CV = 0.

It follows that there is a δ-chain map f̂U : CU → CU such that fU ∼4δ f̂U and
f̂U |CV = 0. Write f̂U = g′′g′, where g′ : CU → CU/CV is the natural epimorphism,
and g′′ : CU/CV → CU . Note that (CU/CV , g′, g′′, hU ) is a 4δ-domination of CU by
a δ-complex over G M(U − B). 2

DEFINITION 5.5. Let X be a topological space. Let B ⊂ X be a metric space which
is closed and forward tame in X . A complex over G M(X, B), dominable by a
complex over G M(X − B), will be called a peripherally contractible complex (see
Definition 5.1).

A chain map f : C→ C ′ is said to be a peripheral homotopy equivalence if its
mapping cone, C( f ), is peripherally contractible.

Note that a contractible complex is obviously peripherally contractible.

DEFINITION 5.6 (Boundary map 1). Let C be a peripherally contractible complex.
By Lemma 5.4, for each δ > 0 and each sufficiently small neighborhood U of B, the
complex (CU , 1) over ̂G M(U, B) is δ-chain homotopic to a δ-projective complex,
denoted by (Eδ, qδ), over ̂G M(U − B). Measurements are made in B, using ρ.
The element χ(λ∗[Eδ, qδ]) ∈ K̃0(B, p; δ) depends only on C and δ, and the family
{χ(λ∗[Eδ, qδ]) | δ > 0} constitutes an element denoted 1C ∈ K̃0(B, p), depending
only on C .

Here p : Holink(X, B)→ B is the projection.
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The next proposition shows that the map 1 defined above gives a homomorphism

1 :Wh(X, B)→ K̃0(B, p),

which we deliberately denote by the same letter 1, for the sake of simplicity.
In the following proposition all complexes and chain maps will be over the category

G(X, B).

PROPOSITION 5.7.

(A) If 0→ C ′→ C→ C ′′→ 0 is a short exact sequence of peripherally contrac-
tible complexes, then 1C =1C ′ +1C ′′.

(B) Suppose that f : C ′→ C is any chain map between peripherally contrac-
tible complexes. Then 1(Cone( f ))=1C −1C ′.

(C) Suppose that f ◦ g is a composite of two peripheral homotopy equivalences
between any complexes. Then 1(Cone( f ◦ g))=1(Cone(g))+1(Cone( f )).

(D) Suppose that C, C ′ are peripherally contractible complexes, which are stably
6-equivalent, in the sense of [24]. Then 1C =1C ′.

PROOF. (A) This is a consequence of the companion exact sequence of chain
complexes over (B, p): 0→ C ′U → CU → C ′′U → 0 (defined for all U sufficiently
small).

(B) If C ′ and C are peripherally contractible, then Cone( f ) is also. There is an
exact sequence

0−→ C −→ Cone( f )−→6C ′ −→ 0.

We obtain from (A) that 1(Cone( f ))=1(6C ′)+1(C). Therefore,

1(Cone( f ))=1(C)−1(C ′).

(C) Given C ′
g
−→ C

f
−→ C ′′, we let f ′ : C→ Cyl( f ) be inclusion, and we let

j : Cone(g)→ Cone( f ◦ g) be the natural map. We then get two exact sequences
of chain complexes:

0→ Cone(g)→ Cone( f ′ ◦ g)→ Cone( f )→ 0,

0→ Cone( f ′ ◦ g)→ Cyl( j)→ c(6C ′)→ 0,

where c(6C ′)= Cone(16C ′) is the cone on the suspension of C ′. The statement
follows at once from (B).

(D) It is enough to show the result when C and C ′ are 6-isomorphic in the sense
of [24]. But each 6-isomorphism f is a product of geometric isomorphisms and
elementary automorphisms. By (B), if f is an automorphism, then 1(Cone( f ))
= 0. Moreover, it is obvious that if f : C→ C ′ is a geometric isomorphism, then
1C =1C ′, so that 1(Cone( f ))= 0, by (B). Therefore 1(Cone( f ))= 0 for any 6-
isomorphism by (C). So by (B), the result follows. 2
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By proceeding in the same way as before, we can also obtain a homomorphism in
the locally finite case:

1 :Whlf(X, B)→ K̃ lf
0 (B, p).

We use Proposition 5.7 in the category G Mlf(X, B).

PROPOSITION 5.8. Let X be a topological space, and B be a metric space which is
closed and forward tame in X. Assume also that X − B is a topological manifold.
Then the sequence

Wh(X, B)
1
−→ K̃0(B, p)

a
−→ K̃0(Zπ1(X − B))

is exact at K̃0(B, p).

PROOF. Here the map p : Holink(X, B)→ B is the projection. Recall that the map a
is a relaxation of control, induced, in the language of [24], by

K̃0(B, p, δ)→ K̃0(B, p,∞).

The map a exists for any control map p.
It is easy to see that a ◦1= 0: let C be a cc-chain complex over G M(X, B). In

order to get the image of [C] under the map a ◦1 one needs to restrict C to a small
enough neighborhood of B, obtaining a finitely dominated chain complex, then relax
the control. But this is the same as using any restriction, and obviously a contractible
cc-chain complex is dominated by the 0 complex. We conclude that Im(1)⊂ Ker(a).

The inclusion Ker(a)⊂ Im(1) is a little more intricate. The rest of the section will
be dedicated to its proof.

Consider the following, which can be easily deduced from the tameness of B in X .

(I) Let U (1)⊃U (2)⊃U (3)⊃ · · · be a sequence of compact X -neighborhoods
of B, such that

⋂
∞

k=1 U (k)= B. We further assume that M(k) :=U (k)− B is
a manifold with bicollared boundary. We set N (k)= M(k)− Int (M(k + 1)).

(II) Let ρ :U (1)× I → X : be a strong deformation retraction of U (1), down to
B, within X . We assume that ρ is nearly strict. That is to say,

ρ−1(B)= (B × I ) ∪ (U (1)× 1).

We also assume that
ρ(U (k)× I )⊂U (k − 1)

for all k > 1.
(III) Set π(k) := ρ|M(k) × 1 : M(k)→ B.
(IV) Let also δ(1) > δ(2) > δ(3) > · · · be a sequence converging to zero, such

that, for each k, ρ|M(k) × I : M(k)× I → M(k − 1) is a δ(k)-homotopy, when
measured using π(k − 1) : M(k − 1)→ B.

(V) Let R(k) : M(k)→ Holink(U (k − 1), B)δ(k−1) be the adjoint to ρ|M(k) × I .
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(VI) Let S(k) : Holink(U (k), B)δ(k)→ M(k) be defined by S(k)(σ )= σ(1). Also
p(k) : Holink(U (k), B)δ(k)→ B: is the holink projection. Note that

π(k)= p(k)R(k) : M(k)→ B.

(VII) Denote the inclusion by

ι(k) : Holink(U (k), B)δ(k)→ Holink(U (k − 1), B)δ(k−1).

Note that there is a controlled homotopy R(k)S(k)'δ(k−1) ι(k), sending a pair
(t, σ ) ∈ I × Holink(U (k), B)δ(k) to a path σt ∈ Holink(U (k − 1), B)δ(k−1).
Here σt and the path σ agree on [t, 1], while σt |[0,t] is a reparametrization
of R(k)(σ (t)). Measurements are taken in B using p(k).

(VIII) Set i(k) := S(k − 1)R(k) : M(k)→ M(k − 1). This is the inclusion also.
(IX) Let ft (k) : M(k)→ M(k), 0≤ t ≤ 1, be a deformation relative to ∂M(k) of

M(k) into N (k). We assume that the homotopy has diameter less than δ(k)
when measured in B using π(k).

Any sequence {U (k), δ(k)}∞k=1 and deformation ρ satisfying the above properties will
be called a tameness structure for (X, B). Note that one can take any subsequence
from this sequence of neighborhoods, and again get a tameness structure.

With these preliminaries, here is the promised description of the group K̃0(B, p) as
an inverse limit of controlled groups.

THEOREM 5.9. In the above notation, there is an isomorphism

lim
←−

k

K̃0(B, π(k); δ(k))
≈
→ K̃0(B, p).

PROOF. Note that each inclusion Holink(U (k), B)δ(k)→ Holink(X, B) is a
homotopy equivalence of diameter 0 when measured in B. Therefore these inclusions
induce an isomorphism

lim
←−

k

K̃0(B, ∂(k); δ(k))→ K̃0(B, p).

But the equations

S(k − 1)R(k)= i(k), R(k)S(k)'δ(k−1) ι(k)

prove that the map

lim
k

R(k) : lim
←−

k

K̃0(B, π(k); δ(k))→ lim
←−

k

K̃0(B, p(k); δ(k))

is also an isomorphism. The result follows. 2
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Using the isomorphism above, we now interpret every element in K̃0(B, p) in the
isomorphic group lim

←−k
K̃0(B, π(k); δ(k)).

LEMMA 5.10. An element of the group lim
←−k

K̃0(B, π(k); δ(k)) is represented by a
sequence (A(k), e(k)), where k = 1, 2, 3, . . . , for which there exist B(k), f (k), g(k),
where k = 1, 2, 3, . . . , with the following properties:

(A) A(k), B(k) are geometric modules on N (k), and (A(k), e(k)) is a δ(k)-
projective module over (B, π(k)), with supports in N (k).

(B) A(k)⊕ B(k)
f (k)
−→ A(k + 1)

g(k)
−→ A(k)⊕B(k) are δ(k)-morphisms in G M(π(k))

with supports in M(k)− M(k + 2).
(C) f (k)g(k)∼δ(k) e(k + 1), g(k) f (k)∼δ(k) (e(k)⊕ 1B(k)).
(D) e(k + 1) f (k)∼δ(k) f (k)∼δ(k) f (k)(e(k)⊕ 1B(k));

g(k)e(k + 1)∼δ(k) g(k)∼δ(k) (e(k)⊕ 1B(k))g(k).

PROOF. The above properties say that i(k + 1)∗(A(k + 1), e(k + 1)) is δ(k)-iso-
morphic to (A(k), e(k))⊕ (B(k), 1). This means that the sequence {A(k), e(k)}∞k=1
constitutes a class in lim

←−k
K̃0(B, π(k); δ(k)). It is therefore a consequence of the

above constructions that these modules and morphisms can be chosen as required,
except for the conditions on their supports. But since, for any k, the supports of
A(k), B(k), e(k), f (k), g(k) consist of finitely many compact sets in M , and since⋂
∞

k=1 U (k)= B, we can always find k′ > k such that M(k′) is disjoint from these
supports. In this way we pass to a subsequence of the tameness structure to obtain the
desired result. 2

It is now easy to see that an element of K̃0(B, p) can be thought of geometrically
as a chain complex C with 2- and 3-handles, such that C2(k)= A(k) and C3(k)=
A(k)⊕ B(k). The 2-handles are trivially attached and the 3-handles have the boundary
maps prescribed by

∂(k)= ∂ ′(k)⊕ ∂ ′′(k) : C3(k)→ C2(k)⊕ C2(k + 1),

where ∂ ′(k) : C3(k)→ C2(k) and ∂ ′′(k) : C3(k)→ C2(k + 1) satisfy

∂ ′(k)= (1− e(k), 0) : A(k)⊕ B(k)→ A(k),

∂ ′′(k)= f (k) : A(k)⊕ B(k)→ A(k + 1).

The next result provides a cc-chain homotopy between the identity map of C and a
map with compact support (also mentioned in [9]).

LEMMA 5.11. In the above notation, there is a cc-chain homotopy H : C→ C such
that (∂H + H∂)∼cc (1C − φ), where φ : C→ C is a cc-chain map in G M(X, B)
satisfying

φ3 = 0 : C3→ C3; φ2|C2(k) = 0 for k ≥ 2; φ2 = e(1) : A→ A.

https://doi.org/10.1017/S1446788708000487 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000487


[23] h-Cobordisms and mapping cylinder obstructions 271

PROOF. Choose δ(k)-maps H ′(k) : C2(k)→ C3(k),

H ′′(k + 1) : C2(k + 1)→ C3(k),

supported on M(k)− M(k + 2) so that H ′′(1)= 0 and so that, for k ≥ 1,

H ′(k)=
(1−e(k)

0

)
: A(k)→ A(k)⊕ B(k),

H ′′(k + 1)= g(k) : A(k + 1)→ A(k)⊕ B(k);

Define H = H ′ ⊕ H ′′ : C2→ C3, where H ′ =
∑
∞

k=1 H ′(k), H ′′ =
∑
∞

k=1 H ′′(k).
Note that ∂ and H are morphisms in G(X, B) because δ(k)→ 0 as k→∞.
We first prove that 1− H∂3 ∼cc 0 : C3→ C3,

H∂3 = H ′∂ ′ + H ′∂ ′′ + H ′′∂ ′ + H ′′∂ ′′.

From the above definitions we get:

(I) H ′∂ ′ =
(

1−e
0

)
(1−e 0)∼cc

(
1−e 0

0 0

)
: A ⊕ B→ A ⊕ B;

(II) H ′∂ ′′ =
(

1−e
0

)
f ∼cc 0 because e f ∼cc f ;

(III) H ′′∂ ′ = g (1−e, 0)∼cc 0 because ge ∼cc g;
(IV) H ′′∂ ′′ = g f ∼cc

(
e 0
0 1

)
: A ⊕ B→ A ⊕ B.

Therefore, (1− H∂3)∼cc
(

1 0
0 1

)
−
(

1−e 0
0 0

)
−
(

e 0
0 1

)
= 0, as required.

Next we prove that: 1− ∂3 H ∼cc φ2 : C2→ C2. As before, we notice that:

(I) ∂ ′H ′ = (1−e 0)
(

1−e
0

)
∼cc (1− e) : A→ A;

(II) ∂ ′H ′′ = (1−e, 0) g ∼cc 0 because (e ⊕ 1B)g ∼cc g;
(III) ∂ ′′H ′ = f

(
1−e

0

)
∼cc 0 because f (e ⊕ 1B)∼cc f ;

(IV) (∂ ′′H ′′)= f g ∼cc
∑
∞

k=1 e(k + 1), which is equal to e − e[1].

Adding, we get

p1
∗(1− ∂3 H)∼cc 1− (1− e)− (e − e[1])= e[1],

as required. It is easy to see that 1− H∂ − ∂H ∼cc φ. 2

Now (A(1), e(1)) is the image of [C] ∈ lim
←−k

K̃0(B, π(k); δ(k)) under the forget-

control map. If the class of (A(1), e(1)) represents 0 in K̃0(Zπ1(X − B)), it follows
that (A(1), e(1))⊕ (D, 1)≈ (E, 1), where (D, 1) and (E, 1) are chain complexes
over G M(X − B). This means that the chain complex C ⊕ D admits a cc-chain
contraction induced by H . So we have found an element of Wh(X, A) whose image
under the boundary map 1 is [C]. This shows that Ker (a)⊂ Im (1), as required. 2

We now prove that the sequence

Wh(B, p)
A
→ Wh(Zπ1(X − B))

I
→Wh(X, B)

1
→ K̃0(B, p)

a
→ K̃0(Zπ1(X − B))

i
→ K̃0(X, B)

is exact at every point.
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Notice that the maps A and a are just the forget-control maps, as explained in the
previous paragraph. The maps I and i are just the inclusion maps.

It is easy to notice that the composition1 ◦ I= 0, because the restriction of a finite
chain complex to a small enough neighborhood of B can be clearly chosen to be empty.

Also, the composition i ◦ a= 0. This follows from Lemma 5.11 above: for any
element [C] ∈ K̃0(B, p) one gets a continuously controlled chain homotopy between
(C, 1) and (a(C), e|a(C)). This says that [C] = 0 in the group K̃0(X, B).

The next two lemmas will complete the proof.

LEMMA 5.12. Let (C, p) be a finite chain complex representing an element of the
group K̃0(Zπ1(X − B)). Assume that there exist continuously controlled chain
complexes (E, 1) and (E ′, 1) such that (C, p)⊕ (E, 1)' (E ′, 1). Then there exists
an element x ∈ K̃0(B, p) such that a(x)= [(C, p)].

PROOF. Suppose we choose ε such that (C, p) is an ε-chain complex. What we
need to prove is that there exists an (ε/2)-chain complex (C1, p1) such that (C, p)
and (C1, p1) are ε-chain equivalent. We choose these chain complexes according to
Lemma 5.10. 2

LEMMA 5.13. Let C be a continuously controlled contractible chain complex (this
implies that [C] is an element of the group Wh(X, B)) such that 1(C)= 0. Then
there exists a finite contractible chain complex D, such that D ⊕ T ≈ C ⊕ T ′, where
T and T ′ are trivial chain complexes and ≈ means a 6-isomorphism in the sense
of [24].

PROOF. By the definition of1we conclude that there exists a neighborhood U of B in
X such that the restriction of C to U , say CU , is a finitely dominated ε-chain complex
which is chain equivalent to a finite complex. 2

6. The torsion of an h-cobordism and the mapping cylinder obstructions

Using the description of the boundary map above, we will prove a formula that
relates 1(τ), where τ is the torsion of an h-cobordism, to the mapping cylinder
obstructions. This was first asserted by Quinn in [21].

THEOREM 6.1. Let (X, B) be a relative manifold (see Definition 3.1). Let W be an
h-cobordism of relative manifolds from (X, B) to (Y, B). Let τ ∈Wh(X, B) be the
torsion of (W, B). Then

1(τ)= r∗q0(W, B)− q0(X, B). (∗)

The map 1 is constructed in the previous section and r∗ : K̃0(B, pW )→ K0(B, pX )

is the isomorphism induced by the retraction r from W to X.

PROOF. We have the following exact sequence of relative pairs:

(X, B)
inclusion
−→ (W, B)−→ (W, X).
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It is easy to see that, by passing to the chain complex level, we still get an exact
sequence:

0−→ C(X, B)−→ C(W, B)−→ C(W, X)−→ 0.

Let δ > 0 be any fixed positive number. Let U be a small enough neighborhood of B
in X , so that all the chain complexes above become δ-complexes when restricted to U .
By choosing appropriate restrictions (remember that the restriction of a chain complex
is not unique) we get the following exact sequence:

0−→ CU (X, B)−→ CU (W, B)−→ CU (W, X)−→ 0.

By [24] again, there exist δ-chain complexes

(Eδ(X, B), pδ(X, B)), (Eδ(W, B), pδ(W, B)), (Eδ(W, X), pδ(W, X)),

over ̂G(U − B) so that (CU , 1) is 4δ-chain homotopic to (Eδ, pδ). We will show
below that, by appropriate choices, one can make the following sequence exact:

0→ (Eδ(X, B), pδ(X, B))→ (Eδ(W, B), pδ(W, B))
→ (Eδ(W, X), pδ(W, X))→ 0.

(i)

The algebraic details are supplied below. Note that this is all we have to prove,
since the class of (Eδ(W, X), pδ(W, X)) represents (1(τ))δ , by construction of the
boundary map. Also, (Eδ(X, B), pδ(X, B)) and (Eδ(W, B), pδ(W, B)) represent
q0δ(W, σW ) and q0δ(X, σ X) respectively as elements of the group K̃0(B, p, δ), as
described in Section 4.2. 2

6.1. Completion of the proof Let A be an additive category with the ‘semisimple’
exact structure (see Definition 2.6). Denote by A∗ the derived category of chain
complexes over A. Recall the standard definition for the mapping cone.

DEFINITION 6.2. Let f : A→ B be a map in HomA∗(A, B). The mapping cone
C( f ) of f is by definition the chain complex B ⊕6A. Here 6A denotes the
suspension of A. The map dC( f ) is given by

(dC( f ))i =

(
dB (−1)i−1 f
0 d6A

)
: Bi ⊕ (6A)i → Bi−1 ⊕ (6A)i−1. (ii)

By [24, Proposition 2.4], C( f ) is contractible if and only if f is a chain equivalence.
Here is a sketch of the proof.

PROOF (SKETCH). Let

0 =

(
k ?

(−1)r g h

)
: C( f )−→ C( f ) (iii)

be a chain contraction. This means that g is the chain homotopy inverse for f , the
homotopies being provided by k and h.
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Conversely, given g, h, k, one defines 0 by

0 =

(
k + ( f g − k f )g (−1)r ( f h − k f )h

(−1)r g h

)
. (iv)

See [24] for more details. 2

LEMMA 6.3. Let

0−→ C ′
ι
−→ C −→ C ′′ −→ 0

be a short exact sequence in A∗. Then there is a chain equivalence C(ι)' C ′′.

The proof is standard.

LEMMA 6.4. Let

C ′
f // C

D′

OO

g // D

OO
(v)

be a commutative diagram in A∗. Then the map C(g, f )i : C(g)i −→ C( f )i given by
the matrix

( g 0
0 6 f

)
is a chain map and makes the diagram.

C ′
f // C // C( f ) // 6C ′

D′

OO

g // D

OO

// C(g)

C(g, f )

OO

// 6D′

OO

commutative.

PROOF. This is just an easy check, using the definition of C( f ). 2

REMARK 6.5. Let α : A→ B be a morphism in A∗. It is easy to see that
HomA∗[C(α), X ] can be identified with

{( f, h) ∈ HomA∗(B, X)× HomA∗(6A, X) | f α
h
' 0}.

PROPOSITION 6.6. Suppose that the following diagram is commutative (the notation
is as above):
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C(α)
C(β,α)

// C(β)

C ′

OO

f
// C

OO

// C( f )

D′

α

OO

g
// D

β

OO

// C(g)

C(g, f )

OO

Then C(C(g, f ))≈ C(C(β, α)). Moreover, the following (completed) diagram is
commutative:

C(α)
C(β,α)

// C(β) // C(C(g, f ))≈ C(C(β, α))

C ′

OO

f
// C

OO

// C( f )

OO

D′

α

OO

g
// D

β

OO

// C(g)

C(g, f )

OO

PROOF. Since

C(g)= D ⊕6D′; (dC(g))i =

(
dD (−1)i−1g
0 d6D′

)
, (vi)

C( f )= C ⊕6C ′; (dC( f ))i =

(
dC (−1)i−1 f
0 d6C ′

)
, (vii)

C(g, f )=

(
β 0
0 6α

)
, (viii)

it follows that

C(C(g, f ))= C( f )⊕6C(g)= C ⊕6C ′ ⊕6D ⊕62 D′, (ix)

(dC(C(g, f )))i =


dC (−1)i f β 0
0 d6C ′ 0 6α

0 0 d6D (−1)i−16g
0 0 0 d62 D′

 . (x)

Similarly,

C(α)= C ′ ⊕6D′; (dC(α))i =

(
dC ′ (−1)i−1α

0 d6D′

)
, (xi)

C(β)= C ⊕6D; (dC(β))i =

(
dC (−1)i−1β

0 d6D

)
, (xii)

C(β, α)=

(
f 0
0 6g

)
, (xiii)
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Therefore

C(C(β, α))= C(β)⊕6C(α)= C ⊕6D ⊕6C ′ ⊕62 D′, (xiv)

(dC(C(β,α)))i =


dC (−1)i−1β f 0
0 d6D 0 6g
0 0 d6C ′ (−1)i−16α

0 0 0 d62 D′

 . (xv)

Now let M ∈A∗, M= C ⊕6C ′ ⊕6D ⊕62 D′, and

(dM)i =


dC f (−1)i−1β 0
0 d6C ′ 0 (−1)i−16α

0 0 d6D 6g
0 0 0 d62 D′

 . (xvi)

It is obvious that M≈ C(C(β, α)). The isomorphism is given by the matrix
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
Also, if A

γ
−→ (B, d) is an isomorphism, then A

(−1)iγ
−→ (B, (−1)i d) is an isomorphism

also. It follows that M≈ C(C(g, f )). 2

Now, if the maps α and β are chain equivalences, it follows that C(α) and C(β)
are chain contractible. By Proposition 6.6 we get that C(g, f ) is a chain equivalence.
This proves equation (i) and hence Theorem 6.1.

COROLLARY 6.7 (Realization theorem for mapping cylinder obstructions). Let X be
a stratified space, so that the singular stratum, say B, has a mapping cylinder
neighborhood in X.

According to [1], there is an exact sequence:

· · ·Wh(X, B)
1
−→ K̃0(B, pX )

a
−→ K̃0(Zπ1(X − B))−→ · · · .

Let x ∈ Ker(a). Then there exists a stratified space Y , such that the singular stratum of
Y is homeomorphic to B and the mapping cylinder obstruction of B in Y is represented
by x. By this we mean that there is an isomorphism (which will be inclusion-induced)
ι : K̃0(B, pX )→ K̃0(B, pY ), so that q0(Y, B)= ι(x).

PROOF. From the hypotheses, it follows that there is a τ ∈Wh(X, A) such that
1(τ)= x . By Theorem 3.5 one can construct on X an h-cobordism of stratified spaces
of torsion τ , say (Y, B). There is an obvious isomorphism induced by the inclusion
of X in Y , ι : K̃0(B, pX )→ K̃0(B, pY ). By the formula (∗), the mapping cylinder
obstruction of B in Y turns out to be ι(x), as required. 2
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