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Abstract

We use bounds of mixed character sum to study the distribution of solutions to certain polynomial systems
of congruences modulo a prime p. In particular, we obtain nontrivial results about the number of solutions
in boxes with the side length below p'/2, which seems to be the limit of more general methods based on
the bounds of exponential sums along varieties.
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1. Introduction

There is an extensive literature investigating the distribution of solutions to the system
of congruences

Fi(xi,...,x)=0 (mod p), j=1,....m, (1.1)

with polynomials F;(Xy, ..., X,) € Z[X,,...,X,], j=1,...,m, in m variables with
integer coefficients, modulo a prime p; see [4, 5, 8, 11, 12].

In particular, subject to some additional condition (related to the so-called A-
number), Fouvry and Katz [5, Corollary 1.5] have given an asymptotic formula for
the number of solutions to (1.1) in a box

(xl,...,x,,)e[O,h—l]"

for a rather small A. In fact, the limit of the method of [5] is & = p!/2*o(),
Here we consider a very special class of systems of s + 1 polynomial congruences

X;---x,=a (mod p), (1.2)

and
km.j —

ki) .
crix,” 440X, =b; (mod p), j=1,...,s, (1.3)
This work was supported in part by the ARC Grant DP130100237.
© 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 $16.00

300

https://doi.org/10.1017/S0004972713000671 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972713000671

[2] Solutions to polynomial congruences in small boxes 301

where a,bj, c;j, ki j € Z, with ged(acij,p)=1, i=1,...,n, j=1,...,5, and 3<
k,',l <. < ki,s‘

The interest in the systems of congruences (1.2) and (1.3) stems from the work
of Fouvry and Katz [5], where a particular case of the congruence (1.2) and just
one congruence of the type (1.3) (that is, for s =1) with the same odd exponents
kig=:+-=ky, =k and b; =0 is given as an example of a variety to which one of
their main general results applies. In particular, in this case and for k > 3, b; =0 (and
fixed nonzero coeflicients) we see that [5, Theorem 1.5] gives an asymptotic for the
number of solutions with 1 < x; <h,i=1,...,n, starting from the values of & of size
about max{p'/>*'/"_ p/4} log p. Here we show that a different and more specialised
treatment allows a significant lowering of this threshold, which now in some cases
reaches p!/*** for any x > 0. Furthermore, this applies to the systems (1.2) and (1.3)
in full generality and is uniform with respect to the coefficients.

More precisely, we use a combination of:

° the bound of mixed character sums to due to Chang [3];
. the result of Ayyad et al. [1] on the fourth moment of short character sums;
e  the bound of Wooley [14] on exponential sums with polynomials.

We note that the classical Pélya—Vinogradov and Burgess bounds of multiplicative
character sums (see [6, Theorems 12.5 and 12.6]), in combination with a result of
Ayyad et al. [1], have been used in [9, 10] to study the distribution of the single
congruence (1.2) in very small boxes, and thus go below the p'/2-threshold.

Here we show that the recent result of Chang [3] enables us now to study a much
more general case of the simultaneous congruences (1.2) and (1.3).

Throughout the paper, the implied constants in the symbols O and <« can depend
on the positive parameter « and on the degrees k;; in (1.2) and (1.3) as well as,
occasionally, of some other polynomials involved. We recall that the expressions
A< B and A =0(B) are each equivalent to the statement that |A| < c¢B for some
constant c.

2. Character and exponential sums

Let X, be the set of multiplicative characters modulo p and let X}, = X, \ {xo} be
the set of nonprincipal characters. We also write

e,(2) = exp(2miz/p).

We appeal to [6] for a background on the basic properties of multiplicative characters
and exponential functions, such as orthogonality.

The following bounds of exponential sums twisted with a multiplicative character
have been given by Chang [3] for sums in arbitrary finite fields but only for intervals
starting at the origin. However, a simple examination of the argument of [3] reveals
that this is not important for the proof.
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Lemma 2.1. For any character y € X, a polynomial F(X) € Z[X] of degree k and
integers u and h > p'/**<,

u+h

D x(e,(F(x) < hp™,

x=u+1

where

K2

T A0+ 2002 +2k+3)

n

We note that we do not impose any conditions on the polynomial F in Lemma 2.1.

On the other hand, when y = y(, we use the following very special case of the much
more general bound of Wooley [14] that applies to polynomials with arbitrary real
coeflicients.

Lemma 2.2. For any polynomial F(X) € Z[X] of degree k>2 with the leading
coefficient ap £ 0 (mod p), and any integers u and h with h < p,

u+h
Z ep(F(x)) < BTV h1—1/2(k—2)p1/2k(k—2).

x=u+1

Clearly, Lemma 2.2 is nontrivial only for 4> p'/¥, which is actually the best
possible range. Furthermore, in a slightly shorter range we have the following
corollary.

CoroLLARY 2.3. For any polynomial F(X) € Z[X] of degree k>?2 with the leading
coefficient a;y 0 (mod p), and any integers u and h with p"/*=D < h < p,

u+h

Z e,(F(x) < J1=1/2k0=2)

x=u+l
We make use of the following estimate of Ayyad et al. [1, Theorem 1].
Lemma 2.4. Uniformly over integers u and h < p, the congruence
X1x = x3%4 (mod p), u+1<x,x,x3,x4<u+h,

has h*/p + O(h*p° V) solutions as h — .

We note that Lemma 2.4 is a essentially a statement about the fourth moment of
short character sums; see [ 1, Equation (4)]. In fact, the next result makes it clearer.

CoroLLARY 2.5. Let p(x) be an arbitrary complex valued function with

lox)| <1, xeR.
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Uniformly over integers | <u<u+h<p,

u+h

Z‘ > pox(x)

XX, x=u+1

4
< h4 + 0(h2p1+0(1)),

as h — oo.

Proor. Expanding the fourth power and changing the order of summation,

u+h 4 u+h
Z‘ DT =Y Y pepC)pea)p (i xaxs x; )
X€X, x=u;+1 XEX) X15enXq=u+1
u+h
= DL pnp)pC)p) Y xtaxx' k")
Xy Xg=u+1 xeX,

Using the orthogonality of characters, we write

u+h 4 u+h

Z] DL = (-1 D pp()p(xa)p(x)

XEX, x=u+l X1 yeeey Xg=UA+1
X1x2=x3x4 (mod p)

u+h

<(p-1 Z 1.

X1 seens. X4:u+l
X1x=x3x4 (mod p)

Applying Lemma 2.4, we derive the desired bound. O

3. Main result

We are now able to present our main result. Let B be a cube of the form
B=[uy+1,ug+h]x---X[u, +1,u, + h

with some integers &, u; with 1 <u; + 1 <u; + h< p,i=1,...,n We denote by N(B)
the number of integer vectors
(X1,...,x,)€B

satisfying (1.2) and (1.3) simultaneously.

As we have mentioned, the case of just one congruence (1.2) has been considered
in [9, 10], so we always assume that s > 1 (and thus n > 3).

Let

k=min{k;; : i=1,...,n, j=1,...,5)},

K=max{k;; : i=1,...,n, j=1,...,s}h

Recall that, due to our assumption, K > k > 3.

https://doi.org/10.1017/S0004972713000671 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972713000671

304 I. E. Shparlinski [5]

Tueorem 3.1. For any fixed k > 0 and

p > h>min{p!/** p!/¢=Dy
we have ;
Np(B) = ps+l + O(hnp_l_”(n_4) + hn_zp_”(”—4)),
where
P
n

T A1+ 2)(K2 + 2K + 3)
Proor. Using the orthogonality of characters, we write

N,(B) = Z % ) pz_i ep(zsl /lj(zn: c,-,jxf’?f - bj))

(X JEB SA=0 =l V=l
1
-1
X _IZ)((xl---xna ).
p xeX,

Hence, changing the order of summation,

1 p-1 s ) n
Ni®) = o 3 o= D by) D[]S .
p P Ta=0 j=1 XeX, i=1
where
ui+h s
S At A)= Y X(x)ep(z A,-c,»,,x’w), i=1,....n.
x:u,-+1 ]=1
Separating the term h"/(p — 1)p?, corresponding to y = yp and 4; =--- =1, =0, we
derive i |
N,(B) — < (R) + Ry), 3.1)
! (p—Dp* — p!
where
p-1 n
Ri= > D ] ]Sitcan.. a0
Ay d=0 Y€Xiy i=1
p-1 n
Ro= > | ]Sitros i, .os )l
k=0 i=l

Ao 3#(0,00)
To estimate R;, we use Lemma 2.1 and write

p-1

Ry <itpnd N Z]i[|s,~(x;/11,...,ﬂs)|.

Aol =0 Y€X;, i=1
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Using the Holder inequality and Corollary 2.5,

4 4
ST = ([ X s i)

XeX), i=1 i=1 yeX;
< h* + hPptre®,
Therefore,
R1 < hnps—n(n—4) + hn—2ps+1—7](n—4)‘ (32)

Furthermore, for R, we use Corollary 2.3 to derive

p-1 2
Ry < 071K % TS 005 s -, A
i=1

ALy A=
(A1,--,29)#(0,...,0)

Using the Holder inequality and the orthogonality of exponential functions (similarly
to the proof of Corollary 2.5),

>[It an. o wi=([T X St A0F) <ph
Ay 5oy =0 i=1 i=1 A1,...4,=0
(A1,...,45)#(0,...,0)
Thus
Ry < B 1-0mD2KK=2) s (3.3)

Substituting the bounds (3.2) and (3.3) in (3.1),

n

h
Np(%) _ F < hnpflfn(n74) + hnfzpfn(n74) + hnflf(th)/ZK(KfZ)pfl.

Clearly,

1
Ap<——
T<2KK -2

Thus we see that

pn(n—4) < P4 o p(n=2)/2K(K=2)

Hence the second term always dominates the third term and the result follows. m|

4. Comments

Clearly, forany k >0,k >5and p>h > pl/ 4+¢ Theorem 3.1 implies that

hﬂ
Ny(®B) = (1 +0(1))F,

as p — oo, provided that
n>(s+ 1/2)17_1 +4.
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For k = 3 and 4 the range of Theorem 3.1 becomes & > p'/? and h > p'/3, respectively.
However, it is easy to see that using the full power of Lemma 2.2 instead of
Corollary 2.3 one can derive nontrivial results in a wider range. Namely, for any « > 0
there exists some y > 0 (independent of n and other parameters in (1.2) and (1.3)) such
that, for 4 > p'/>** if k = 3 and for h > p"/** if k = 4,

n

N,(B) = =+ O(h!'M).

(p="Dp
We also recall that for polynomials of small degrees stronger versions of Lemma 2.2
are available; see [2] and references therein.

Note that the same method can be applied (with essentially the same results) to the
systems of congruences where instead of (1.2) we have a more general congruence

X" xm=a  (mod p)

for some integers m; with gcd(m;, p—1)=1,i=1,...,n.

Moreover, we recall that the Weil bound [13, Appendix 5, Example 12] (see also [7,
Ch. 6, Theorem 3]) and the standard reduction between complete and incomplete sums
(see [6, Section 12.2]) imply that

u+h

D X(G@)e,(F) < p''log p,

x=u+1

where G(x) is a polynomial that is not a perfect power of any other polynomial in the
algebraic closure FF, of the finite field of p elements. Thus for 4 > p'/2**_using this
bound instead of Lemma 2.1 allows us to replace (1.2) with the congruence

G](Xl) e Gn(xn) =a (mOd P)

for arbitrary polynomials G(X), . .., G,(X) € Z[X] such that their reductions modulo
p are not perfect powers in Fp. In fact, even for G1(X) =---=G,(X) = X (that is,
for the congruence (1.2)) this leads to a result which is sometimes stronger that those
of [5] and Theorem 3.1.
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