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THE COEFFICIENTS OF S m h X 

COS X 

BY 

J. M. GANDHIO 

1. Introduction. The purpose of the present paper is to investigate some of the 
properties of the coefficient K2n defined by 

n n sinhx_ « *2n+1 

U ; cos* ~ n{<0
 A 2 n(2«+l)f 

We prove 

(1.2) K2n = l(mod In +1) if In +1 is prime. 

(1.3) Kén + 2~ 4(mod 10), #4n + 4 s 6(mod 10) 

(1.4) tf2n = 2 - i « ( » ) - 2 ^ 2 s?o(~~1)Kn+S) ( 2 Ï 2 ) *2s a{n>5) 

where g(w) = (-l) (n+1) /2 if n is odd, g(«) = ( - l )^ 2 if n is even, a(n,j) = 2 if 
n—s+1 is odd, a(«, £)=0 if «-*s+1 is even, and B2s are the well-known Bernoulli's 
numbers. 

As corollaries to (1.4) we prove 

(1.5) Kén + 2 = 0(mod 22»+2), *4n + 2 & 0(mod 22»+3) 

(1.6) #4n = 0(mod 22n), #4n ^ 0(mod 22n+*) 

Also let 
(1.7) KéJ2** = K'én and * 4 n + 2 /2 2 n + 2 = *Jn+a. 

From (1.4) we prove the following interesting special cases. 

(1.8) *Jms=l(mod4) 

(1.9) *Jm+as(-l)™(mod4) 

and 

(1.10) KL s 2 ( - l ) « - ^ i ^ ( m o d 3 2 ) 

(1.11) *4 m + 2 s ( ^ i r - ^ 1 ) m + 1
3

2 ( 4 m + 3)(mod32) 

For a large part of this paper we follow Carlitz's paper [3]. For other related co­
efficients, for example, sinh x/sin x, cosh x/cos x, etc., the papers listed may be 
referred to. 
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2. Now (1.1) can be written as 
oo is y.2n + l 

sinhx = c o s x J o ( g T ï y r 

Writing the expansions of sinh x and cos x, and simplifying and equating the 
coefficients of x2n+1, we have 

Using (2.1) we calculate some values of K2n-

TABLE 1 

#o = 1. KQ = 18256. 
# 2 = 4. #1 0 = 81,41,44. 
# 4 = 36. # 1 2 = 51,47,57,76. 
K6 = 624. 

From (2.1) it is easy to prove that except f̂0 all other coefficients are even positive 
integers. 

Now we prove (1.2). Let 2n+1 be a prime then I J will always have a factor 

2n+1 for all values of y except when y = 0 and y = 2n+l. Hence when (2.1) is 

divided by 2n+l, the remainder will be I- 11 and hence we get 7T2n=l(mod 

2n +1) if 2n +1 is prime. 

Proof of (1.3). Putting 2n + \ for n in (2.1) we get 

(2.2) 4̂n + 2 = (4^3) + (ZXl)K*« 

Assume that 

(2.3) 
K±n = 6(mod 10) and 

K±n-2 = 4(modl0) 

for n= 1, 2 , . . . , n; then from (2.2) by elementary but lengthy discussions we can 
prove (2.4) Kén+2 = 4(mod 10). 

Now substituting 2n for n in (2.1) and using (2.3) and (2.4) we can prove 

^4n + 4 = 6(mod 10) 

and the result follows by the usual method of induction. 
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3. We have 

(3.1) 1/cos x = f ( - l)nE2nx
2n/(2n) ! 

n = 0 

where E2n are the Euler numbers in the even suffix notation. 
Using (3.1) and (1.1) it is easy to prove 

(3.2) ^ ( - D f ^ 1 ) ^ ^ ^ , 

Let/fa) be an odd polynomial defined by 

so that 

r( N = v (-l)y(2«+l)! ar 
/ W

 rfb(2y)!(2«-2y+l)!* ' 

Therefore, 

f'(E) = l o ( - l)r (2"2y *) £» = *a» by (3.3). 

Now it was proved by Carlitz [3] that 

(3.4) f\E) = -f{AB+\) 

where the J5'S are the well-known Bernoulli numbers. Thus 

(3.5) ^ = _ _ L _ | o ( _ i y g + 2 ) ( 4 B + i r + 1. 

Now 

Since 
^ /2n—jr+2' 

y 

it is evident that 

2n+l / % _ „ i 9 \ 

| (22„-J1) (-1)" = Ç [(l+02«-s+2+(-l)s-1(l-/)2n-s+2]. 

In particular we have 

™ iu^o*-')-,?/-')'̂ ')-
By elementary methods it can be shown that the right-hand side of (3.6) equals 

2 \ - l)(n + D/2 w h e n n j s 0 ( J d a n J 2 n ( _ l)n/2 w h e n ^ } g e y e n 
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Also 

Î (-iW?""?"1"^ =/(2s-1)/2[(l + 02n"2s + 2 + (-l)2s"1d-02n"2s + 2] 
y=s \2n — 2y -f 1 / 

= 2n-s(-l)ll2in+s)a(n9s). 

where a(w)=2 if n-s4-1 is odd and a(n) = 0 if n—s+l is even. 

It follows that 

i (_ „, g : g (4S+„„.. Y (*;>) 4.,. 2 ,-„. £_-£*). 
Since i?2n + 1=0we have 

= -2n+1(2n+2)g(n)+ | P ^ 2 ) 24»JB2t2
n-(-l)(,l+«)/2a(«^) 

= -2 w + 1(2« + 2 ) ^ ) + 2- 2 ( - l)(n+s)/2 ( 2 ^ 2 ) 23s£2sa(«, j), 

where #(«) = ( - l)(n+1)/2 if « is odd and g(ri) = (- l)n/2 if « is even. 
Then (3.5) becomes 

(3.7) K2n = 2"+ig(n)-^j2 s ? 0 ( " 1)<n+s, /2 f " ^ ) 23s^"("> ')• 

Substituting n = 2m and n = 2m+1 we respectively get 

9 2 m 2 m /4m4-?\ 

(3.8) tf4m = 2 2 » + ^ ( 2 m ) - ^ T 2 s ? 0 <" D(2m+S,,2( 2s j 2 ^ ^ ^ , s) 

and 
(3.9) *4 m + 2 = (2 m

2
+ 2)g(2m+l) 

92m+ 1 2ro+l / 4 m 4 - 4 \ 

= ^-1)m-4^2|0(-1)< 2 m + S"2 ( ' Î 2 ) 23s^(2m,,) 

From (3.8) we have 

22rr 

since all terms on right are even except the term with s=0, which is — l/(2m +1), 
and hence 

Kém = 0(mod 22m) and Kém ̂  0(mod 22m+1). 

Similarly from (3.9) we get 

K±m+2 s 0(mod 22m+2) and KAm + 2 é̂ 0(mod 22m + 3). 

Now letting 

( 3 - 1 0 ) ^ 4 n __ ^ / or_ J ^ 4 n + 2 _ r^/ 
"22rT "~ ^ ^ n <*I1U 92n + 2 ~" A 4 n + 2 
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(3.8) and (3.9) respectively become 

(3.11) Kim = X-ir-j^t^-ir"*™ (4m+2) 23s528«(2m, s) 

1 2m+ 1 

(3.12) j ^ + a = ( - l ) - + i _ _ J _ 2 o ( - l )^+ i*») /2 

X ( 4 7 2 ^ 4 ) 2 3 S j S 2 8 a ( 2 m + 1 ' 5 ) -

From (3.12) it follows that 

« . + . - ( - i r ^ - g ^ ( 4 ^ 4 ) 2 -x |x2(mod4) 

s - ( ~ l ) m + 1 = (-l)m(mod4). 

whereby (1.9) is being proved. 
From (3.10) we have 

Kim ES 2 ( - i r - i ^ ( ~ i r x 2 ( m o d 4 ) 

or 

(2m+l)^mE=(-l)^(mod4). 

from which it follows that if m is even then Kim = l(mod 4), while if m is odd then 
3££m = — l(mod4) or ^m==l(mod4), i.e. i^4m=l(mod4) for all values of m, 
whereby (1.8) is being proved. Since in (3.11) and (3.12), the terms in summations 
are divisible by 32 except the first, and hence 

and 

Ki, = 2(-ir-i;J^(mod32) 

« _ = (_,).•. J r Œ ^ > ( m o d 32). 

Before concluding we remark that using (1.7) and the fact that the last digit of 
Kin+2 is 4 and the last digit of Kin+i is 6 it can be easily proved that K'6n+2=l(mod 
10), ^ n = l ( m o d l 0 ) , ^ n + 4 =9(mod 10) and ^ n + 6 =9(mod 10). We list some 
values of K'. 

TABLE 2 

A J - 1 . AS = 11,41. 

K'2 = 1. K'10 = 12,721. 

Ki = 9. K[2 = 80,43,09. 

Kk = 39. 
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