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We consider the well-posedness of a stochastic evolution problem in a bounded
Lipschitz domain D ⊂ R

d with homogeneous Dirichlet boundary conditions and an
initial condition in L2(D). The main technical difficulties in proving the result of
existence and uniqueness of a solution arise from the nonlinear diffusion-convection
operator in divergence form which is given by the sum of a Carathéodory function
satisfying p-type growth associated with coercivity assumptions and a Lipschitz
continuous perturbation. In particular, we consider the case 1 < p < 2 with an
appropriate lower bound on p determined by the space dimension. Another difficulty
arises from the fact that the additive stochastic perturbation with values in L2(D)
on the right-hand side of the equation does not inherit the Sobolev spatial regularity
from the solution as in the multiplicative noise case.
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1. Introduction

1.1. Statement of the problem

Let (Ω,F , P ) be a complete, countably generated probability space (e.g. the
classical Wiener space), D ⊂ R

d be a bounded Lipschitz domain, T > 0, QT :=
(0, T ) ×D. We are interested in a result of existence and uniqueness of the solution
to

du− div(a(x, u,∇u) + F (u)) dt = ΦdW (t) in Ω ×QT ,
u = 0 on Ω × (0, T ) × ∂,

u(0, ·) = u0 ∈ L2(D).
(1.1)

The nonlinear diffusion-convection operator of Leray–Lions’ type is defined as the
sum of a Carathéodory function a : D × R

d+1 → R
d satisfying appropriate growth

and coercivity assumptions which will be given below and F : R → R
d Lipschitz con-

tinuous with Lipschitz constant L > 0, such that F (0) = 0. On the right-hand side,
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Φ ∈ L2(Ω; C([0, T ];HS(L2(D))) is progressively measurable, where HS(L2(D)) is
the space of Hilbert–Schmidt operators from L2(D) to L2(D). W is a cylindri-
cal Wiener process in L2(D) with respect to a filtration (Ft)t∈[0,T ], denoted (Ft)
in the sequel, satisfying the usual assumptions. More precisely, W is defined in
the following sense (see, e.g. [3]): for a fixed orthonormal basis (en)n∈N∗ of L2(D)
and a sequence of independent, real-valued (Ft)-Brownian motions (βn)n∈N∗ , we
define for any t ∈ [0, T ] and u ∈ L2(D), 〈W (t), u〉 :=

∑∞
n=1(en, u)L2(D)βn(t). One

can check (see, e.g. [3, p. 85]) that for any u ∈ L2(D), 〈W,u〉 is a real-valued,
(Ft)-Wiener process such that E [〈W (t), u〉〈W (s), v〉] = min(t, s)(u, v)L2(D) for any
u, v ∈ L2(D), for all s, t ∈ [0, T ]. W can be represented in the following way: for any
sequence (an) ∈ l1(R+) it is easy to check that W (t) :=

∑∞
n=1

√
an(en/

√
an)βn(t)

is a Q-Wiener process with positive definite, symmetric and nuclear covariance
operator Q = diag(an) in the (bigger) Hilbert space

U := Q−1/2(L2(D)) (1.2)

which is obtained as the completion of L2(D) with respect to the norm ‖ · ‖U

induced by the scalar product (u, v)U := (Q1/2u,Q1/2v)L2(D). However, the stochas-
tic integral

∫ t

0
ΦdW (s), t ∈ [0, T ], can be defined independently of the representa-

tion of W and the choice of Q by ΦdW (t) :=
∑∞

n=1 Φ(en) dβn(t).

1.2. Motivation and former results

The technical novelties of this contribution arise from the stochastic forcing
of the nonlinear diffusion-convection operator u 
→ −div(a(x, u,∇u) + F (u)). The
diffusion part u 
→ −div a(x, u,∇u) is a monotone operator with p-growth and
coercivity conditions for 2d/(d+ 1) < p <∞ where d ∈ N

∗ is the space dimen-
sion (see § 1.3 for more details). In particular, the assumptions include a class
of p-Laplacian operators with 1 < p < 2, p appropriately bounded away from 1.
In contrast, the convection part u 
→ −div F (u) is, in general, not monotone but
strongly continuous. It is well-known that a semigroup representation of the solu-
tion in the sense of [3] is not available in this nonlinear case. Moreover, classical
well-posedness theory for monotone SPDEs (see, e.g. [11]) and for locally monotone
SPDEs (see [10]) does not apply for a general perturbation of the type −div F (u)
for Lipschitz continuous F : R → R

d. Therefore, our aim is to show well-posedness
results by using a semi-implicit Euler–Maruyama time discretization (i.e. implicit
in the operator part and explicit in the noise one). From the a priori estimates, we
get weak convergences of approximate solutions with respect to (ω, t, x), but com-
pactness arguments can be applied uniquely with respect to the variables (t, x). It
is therefore not possible to identify the limit of the convection part of the operator.
However, it is possible to show the existence of a martingale solution by adapt-
ing argumentations based on convergence in law and Skorokhod’s representation
theorem. Then, since a pathwise uniqueness result can be obtained by using a L1-
contraction principle, the existence of a strong solution follows by the argument of
convergence in probability of Gyöngy and Krylov [8]. Those techniques are well-
known for evolution problems with a multiplicative stochastic perturbation and
have been applied in, e.g. [4,6] and by many other authors in the last few decades.
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In our case, this method allows to pass to the limit in the nonlinear convection oper-
ator. Taking advantage of the additive character of the stochastic perturbation, we
can recover the stochastic integral by using a result detailed by Debussche et al. in
[4]. Since the stochastic integral takes values in L2(D), it does not inherit spatial
Sobolev regularity of the solution. Therefore, the compactness arguments are more
subtle than in the case of a multiplicative stochastic perturbation as considered in
[17] for the operator u 
→ −div(|∇u|p−2∇u+ F (u)) with p > 2.

1.3. Assumptions on the nonlinear operator

The vector field a : D × R × R
d → R

d, (x, λ, ξ) 
→ a(x, λ, ξ) is a Carathéodory
function in the sense that the mapping (λ, ξ) 
→ a(x, λ, ξ) is continuous for almost
every x ∈ D and x 
→ a(·, λ, ξ) is measurable for every (λ, ξ) ∈ R × R

d. In the
following, let 2d/(d+ 1) < p <∞ and p′ = p/(p− 1). We impose the following
conditions:

(A1) a is monotone with respect to its last variable only,

[a(x, λ, ξ) − a(x, λ, η)] · (ξ − η) � 0

for all λ ∈ R, ξ, η ∈ R
d and almost every x ∈ D.

(A2) There exists κ ∈ L1(D), some constants C1
a > 0, C2

a � 0, C3
a � 0 and a

nonnegative function g ∈ Lp′
(D) such that

a(x, λ, ξ) · ξ � κ(x) + C1
a |ξ|p, (1.3)

|a(x, λ, ξ)| � C2
a |ξ|p−1 + C3

a |λ|p−1 + g(x) (1.4)

for all λ ∈ R, ξ ∈ R
d and almost every x ∈ D.

(A3) There exists a constant C4
a � 0 and a nonnegative function h ∈ Lp′

(D) such
that

|a(x, λ1, ξ) − a(x, λ2, ξ)| � [C4
a |ξ|p−1 + h(x)]|λ1 − λ2|

for all λ1, λ2 ∈ R, for all ξ ∈ R
d and almost all x ∈ D.

From assumptions (A1)–(A2) it follows that the nonlinear operator

A : W 1,p
0 (D) →W−1,p′

(D), u 
→ A(u) := −div a(x, u,∇u)

is well-defined, hemicontinuous and pseudomonotone (see [12, lemma 2.32]). From
assumption (1.3) of (A2), it follows that A is coercive.

Since p > 2d/(d+ 1) > 2d/(d+ 2), this implies that p∗ := dp/(d− p) > 2 when
p < d and W 1,p

0 (D) is compactly embedded into L2(D). In addition, the stricter
condition p > 2d/(d+ 1) implies that p′ < p∗. Therefore, Lp∗

(D) is continuously
embedded in Lp′

(D) and the operator u ∈W 1,p
0 (D) 
→ −div(a(x, u,∇u) + F (u)) is

well defined. An example of an operator satisfying (A1)–(A3) is given by A(u) =
−div(ϕ(x, u)|∇u|p−2∇u) for a strictly positive, Lipschitz continuous (with respect
to the second variable) and bounded function ϕ.
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1.4. Strong solutions

Let us recall the notion of strong solution to (1.1):

Definition 1.1. A (strong) solution to (1.1) is a predictable process u ∈
L2(Ω; C([0, T ];L2(D))) ∩ Lp(Ω;Lp(0, T ;W 1,p

0 (D))) such that u(0, ·) = u0 in L2(D)
and

u(t) − u0 −
∫ t

0

div(a(x, u,∇u) + F (u)) ds =
∫ t

0

ΦdW (s),

in L2(D) for all t ∈ [0, T ], a.s. in Ω.

1.5. Main result and outline

Theorem 1.1. For any u0 ∈ L2(D) and any progressively measurable Φ ∈
L2(Ω; C([0, T ];HS(L2(D))) there exists a strong solution to (1.1).

The proof of theorem 1.1 is contained in the following section. It is based on
an approximation procedure by a time discretization of (1.1) introduced in § 2.1.
Since there is a lack of compactness with respect to ω ∈ Ω, we use the theorems
of Prokhorov and Skorokhod to obtain a.s. the convergence of the sequence of
approximate solutions [2].

2. Proof of theorem 1.1

2.1. Time discretization

For N ∈ N
∗, let 0 = t0 < t1 < . . . < tN = T be an equidistant subdivision of the

interval [0, T ] with τ := T/N = tk+1 − tk for all k = 0, · · · , N − 1. For u0 ∈ L2(D),
u0 = uτ

0 given by lemma A.1 and Φk := Φ(tk) for k = 0, . . . , N − 1, we introduce
the semi-implicit Euler–Maruyama scheme

uk+1 − uk − τ div(a(x, uk+1,∇uk+1) + F (uk+1)) = ΦkΔk+1W, (2.1)

where ΦkΔk+1W := Φ(tk)(W (tk+1) −W (tk)) for k = 0, . . . , N − 1.

Lemma 2.1. For any τ > 0 and any given F-measurable uk ∈ L2(D), there exists a
unique F-measurable function uk+1 : Ω →W 1,p

0 (D) satisfying (2.1) in L2(D), for
a.e. ω ∈ Ω. If moreover uk is Ftk

-measurable, then uk+1 is Ftk+1-measurable.

Proof. The operator Aτ : W 1,p
0 (D) →W−1,p′

(D) defined by

〈Aτ (u), v〉W−1,p′ ,W 1,p
0

:= (u, v)2 + τ

∫
D

(a(x, u,∇u) + F (u)) · ∇v dx

for u, v ∈W 1,p
0 (D) is a pseudomonotone operator, since it is the sum of a

pseudomonotone operator and a strongly continuous perturbation (see, e.g. [12,
corollary 2.12, § 2.4.3]). Thanks to (A2), condition (1.3) and Gauss–Green’s
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theorem, Aτ is coercive, i.e.

lim
‖u‖

W
1,p
0 (D)

→∞

〈Aτ (u), u〉W−1,p′ (D),W 1,p
0 (D)

‖u‖W 1,p
0 (D)

= +∞.

Let V ⊂W 1,p
0 (D) be bounded, i.e. supu∈V ‖u‖W 1,p

0 (D) � CV for some constant
CV � 0. In the following, Ci � 0, for i = 1, 2, 3 . . . will be constants. For any u ∈ V
and any v ∈W 1,p

0 (D) such that ‖v‖W 1,p
0 (D) � 1 we have

|〈Aτ (u), v〉W−1,p′ ,W 1,p
0

| � I1 + I2 + I3. (2.2)

Using Cauchy–Schwarz inequality and the continuous embedding of W 1,p
0 (D) into

L2(D) for p � 2d/(d+ 1), we have

I1 = |(u, v)2| � ‖u‖2‖v‖2 � C1‖u‖W 1,p
0 (D)‖v‖W 1,p

0 (D) � C1CV . (2.3)

From (1.4) of (A2), Young’s and Poincaré’s inequalities it follows that

I2 = τ

∫
D

|a(x, u,∇u) · ∇v|dx

� τ

p′
C2

∫
D

|∇u|p + |u|p + g(x)p′
dx+

τ

p
‖v‖p

W 1,p
0 (D)

� τ

p′
C2(‖u‖p

W 1,p
0 (D)

+ ‖g‖p′
p′) +

τ

p
� C3(C

p
V + ‖g‖p′

p′ + 1). (2.4)

We recall that thanks to the condition p > 2d/(d+ 1), it follows that Lp∗
(D) is

continuously embedded into Lp′
(D) and therefore we can estimate

I3 = τ

∫
D

|F (u)||∇v|dx � τ

p′

∫
D

|F (u)|p′
dx+

τ

p
‖v‖p

W 1,p
0 (D)

� τ

p′
Lp′‖u‖p′

p′ +
τ

p
� C‖u‖p′

p∗ +
τ

p
� C4(‖u‖p

W 1,p
0 (D)

+ 1) � C4(C
p
V + 1), (2.5)

where L > 0 is the Lipschitz constant of F . From equations (2.2)–(2.5) it follows
that Aτ is bounded and, by Brezis’ theorem (see, e.g. [12, theorem 2.6 on p. 33]),
Aτ is onto W−1,p′

(D). In order to show that Aτ is injective, we fix f ∈W−1,p′
(D)

and assume that there exist u1, u2 ∈W 1,p
0 (D) such that Aτ (u1) = Aτ (u2) = f in

W−1,p′
(D). Then, for the non-decreasing Lipschitz continuous approximation of the

sign function (signδ)δ�0 defined for all r ∈ R by signδ(r) = max(−1,min(1, r/δ)),
the chain rule for Sobolev functions yields J1 + J2 + J3 = 0, where

J1 =
∫

D

(u1 − u2) signδ(u1 − u2) dx,

J2 =
∫

D

sign′
δ(u1 − u2)(a(x, u1,∇u1) − a(x, u2,∇u2)) · ∇(u1 − u2) dx,

J3 =
∫

D

sign′
δ(u1 − u2)(F (u1) − F (u2)) · ∇(u1 − u2) dx.
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It follows immediately that limδ→0+ J1 =
∫

D
|u1 − u2|dx. Now we write J2 = J2,1 +

J2,2, where, by (A1),

J2,1 =
∫

D

sign′
δ(u1 − u2)(a(x, u1,∇u1) − a(x, u1,∇u2)) · ∇(u1 − u2) dx � 0

and by (A3)

|J2,2| �
∫

D

sign′
δ(u1 − u2)|a(x, u1,∇u2) − a(x, u2,∇u2)||∇(u1 − u2)|dx

� 1
δ

∫
{|u1−u2|<δ}

(C4
a |∇u2|p−1 + h(x))|u1 − u2||∇(u1 − u2)|dx

� C

(∫
D

|∇u2|p + h(x)p′
dx
)1/p′ (∫

{|u1−u2|<δ}
|∇(u1 − u2)|p dx

)1/p

.

Since ∇(u1 − u2) = 0 a.e. in {u1 = u2} for Sobolev functions, limδ→0+ |J2,2| = 0
and lim supδ→0+ J2 � 0. Since F is Lipschitz continuous with Lipschitz constant
L > 0, we have

|J3| � 1
δ

∫
{|u1−u2|<δ}

L|u1 − u2||∇(u1 − u2)|dx,

thus limδ→0+ J3 = 0. Combining the above results, we obtain u1 = u2.
It is left to show that A−1

τ : W−1,p′
(D) →W 1,p

0 (D) is demi-continuous. For
f ∈W−1,p′

(D) and u such that Aτ (u) = f , using Gauss–Green’s theorem on the
convection term, we get 〈f, u〉W−1,p′ (D),W 1,p

0 (D) = ‖u‖2
2 + τ

∫
D
a(x, u,∇u) · ∇u dx.

By (A2),
∫

D
a(x, u,∇u) · ∇u dx � −‖κ‖1 + C1

a‖∇u‖p
p and therefore, using

Young’s inequality, for any δ > 0 we get

‖u‖2
2 − τ‖κ‖1 + τC1

a‖∇u‖p
p � 〈f, u〉W−1,p′ (D),W 1,p

0 (D)

� Cτ,δ

p′
‖f‖p′

W−1,p′ (D)
+
τδ

p
‖∇u‖p

p (2.6)

with a constant Cτ,δ � 0. Let (fn) ⊂W−1,p′
(D) be a sequence converging to f in

W−1,p′
(D). For all n ∈ N

∗, we define

un := A−1
τ (fn). (2.7)

From (2.6) it follows that there exists a not relabelled subsequence of (un), u ∈
W 1,p

0 (D) and B in Lp′
(D)d such that un ⇀ u in W 1,p

0 (D), un → u in L2(D) thanks
to p∗ > 2 and a(x, un,∇un) ⇀ B in Lp′

(D)d for n→ ∞. Using these convergence
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results and (2.7), we get

‖u‖2
2 + τ lim sup

n→∞

∫
D

a(x, un,∇un) · ∇un dx

= 〈f, u〉W−1,p′ (D),W 1,p
0 (D) = ‖u‖2

2 + τ

∫
D

B · ∇u dx. (2.8)

Thus, from (2.8) it follows that

lim sup
n→∞

〈Aτ (un), un − u〉W−1,p′ (D),W 1,p
0 (D)

= lim sup
n→∞

∫
D

a(x, un,∇un) · ∇un dx−
∫

D

B · ∇u dx = 0 (2.9)

and since Aτ is pseudomonotone, (2.9) implies Aτu = f .
Consequently, un = A−1

τ (fn) ⇀ A−1
τ (f) = u in W 1,p

0 (D), a priori for a sub-
sequence. Since u is unique, it follows that the whole sequence (un) converges to u
weakly in W 1,p

0 (D) for n→ ∞ and A−1
τ is demi-continuous.

By assumption, ΦkΔk+1W + uk is F (resp. Ftk+1) measurable, thus

uk+1 = A−1
τ (ΦkΔk+1W + uk)

is weakly F (resp. Ftk+1) measurable, thus measurable by the theorem of Pettis
(see [18, V. 4, p. 131]) since W 1,p

0 (D) is separable. The lemma is proved. �

2.2. Estimates

Lemma 2.2. For u0 ∈ L2(D), and k = 0, . . . , N − 1, let uk+1 be the solution to
(2.1). Then,

1
2

E
(‖uk+1‖2

2 − ‖uk‖2
2

)
+

1
4

E‖uk+1 − uk‖2
2 + τC1

aE‖∇uk+1‖p
p

� τ‖κ‖1 + τ E‖Φk‖2
HS(L2(D)). (2.10)

Proof. Taking uk+1 as a test function in (2.1), we get

(uk+1 − uk, uk+1)2 − τ〈div(a(x, uk+1,∇uk+1) + F (uk+1)), uk+1〉W−1,p′ (D),W 1,p
0 (D)

= (ΦkΔk+1W,u
k+1)2 ⇔ I1 + I2 + I3 = I4 (2.11)

where I1 := (uk+1 − uk, uk+1)2 = 1
2 (‖uk+1‖2

2 − ‖uk‖2
2 + ‖uk+1 − uk‖2

2), and, using
(A2), I2 := τ

∫
D
a(x, uk+1,∇uk+1) · ∇u dx � −τ‖κ‖1 + τC1

a‖∇u‖p
p.
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From Gauss–Green’s theorem it follows that

I3 = τ

∫
D

F (uk+1) · ∇uk+1 dx = 0,

and we still have to estimate I4 = (ΦkΔk+1W,u
k+1 − uk)2 + (ΦkΔk+1W,u

k)2.
Combining (2.11) with the above estimates and taking expectation we arrive at

1
2

E
(‖uk+1‖2

2 − ‖uk‖2
2 + ‖uk+1 − uk‖2

2

)
+ τC1

aE‖∇u‖p
p

� τ‖κ‖1 + E(ΦkΔk+1W,u
k+1 − uk)2 + E(ΦkΔk+1W,u

k)2.

Since uk is Ftk
-measurable and W (tk+1) −W (tk) is Ftk

-independent, we have

E(ΦkΔk+1W,u
k)2 = E(uk,E [Φk(W (tk+1) −W (tk))|Ftk

])2 = 0.

Using Hölder’s and Young’s inequalities it follows that for any α > 0

E(ΦkΔk+1W,u
k+1 − uk)2 � 1

2

(
1
α

E

∥∥∥∥∫ tk+1

tk

Φk dW (t)
∥∥∥∥2

2

+ αE‖uk+1 − uk‖2
2

)
.

(2.12)

By Itô’s isometry, setting α = 1
2 in (2.12) yields

E(ΦkΔk+1W,u
k+1 − uk)

� E

∫ tk+1

tk

‖Φk‖2
HS(L2(D)) dt+

1
4

E‖uk+1 − uk‖2
2

= τE‖Φk‖2
HS(L2(D)) +

1
4

E‖uk+1 − uk‖2
2,

and therefore (2.10) holds. �

Definition 2.1. For N ∈ N
∗, τ > 0, we introduce the right-continuous step

function

ur
N (t) =

N−1∑
k=0

uk+1χ[tk,tk+1)(t), t ∈ [0, T ),

the left-continuous, (Ft)-adapted step function

ΦN (t) =
N−1∑
k=0

Φkχ(tk,tk+1](t), t ∈ (0, T ],

the continuous, square-integrable (Ft)-martingale

MN (t) =
∫ t

0

ΦN dW (s), t ∈ [0, T ]
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and the piecewise affine functions

ûN (t) :=
N−1∑
k=0

(
uk+1 − uk

τ
(t− tk) + uk

)
χ[tk,tk+1)(t), t ∈ [0, T ), ûN (T ) = uN ,

M̂N (t) =
N−1∑
k=0

(
MN (tk+1) −MN (tk)

τ
(t− tk) +MN (tk)

)
χ[tk,tk+1)(t), t ∈ [0, T ].

Lemma 2.3. There exist a generic constants Ki � 0, i = 1, . . . , 6 not depending on
the discretization parameters such that

N−1∑
k=0

E‖uk+1 − uk‖2
2 � K1, (2.13)

max
n=0,...,N

E‖un‖2
2 � K2, (2.14)

E

∫ T

0

‖ur
N‖2

2 dt � K3 and E

∫ T

0

‖ûN‖2
2 dt � K4, (2.15)

E

∫ T

0

‖∇ur
N‖p

p dt � K5 and E

∫ T

0

‖∇ûN‖p
p dt � K6. (2.16)

Proof. We fix n ∈ {1, . . . , N}, take the sum over 0, . . . , n− 1 in (2.10) to get

1
2

E‖un‖2
2 −

1
2

E‖u0‖2
2 +

1
4

n−1∑
k=0

E‖uk+1 − uk‖2
2 + C1

a

n−1∑
k=0

τE‖∇uk+1‖p
p

�
n−1∑
k=0

τE‖Φk‖2
HS(L2(D)) + T‖κ‖1. (2.17)

From (2.17) and lemma A.1 (see appendix) it follows that

1
2

E‖un‖2
2 +

1
4

n−1∑
k=0

E‖uk+1 − uk‖2
2 + C1

a

∫ T

0

E‖∇ur
N‖p

p dt

� 1
2

E‖u0‖2
2 + TE‖Φ‖2

C([0,T ];HS(L2(D)) + T‖κ‖1

and we get (2.13), (2.14) and the first inequality of (2.16). Now, from (2.14)
it follows that E

∫ T

0
‖ur

N‖2
2 dt � T maxk=1,...,N E‖uk‖2

2 � K3. Since there exists a
constant C � 0 such that E

∫ T

0
‖ûN‖2

2 dt � Cτ
∑N

k=0 E‖uk‖2
2, we have shown both
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inequalities of (2.15). Thanks to lemma A.1 it follows that

E

∫ T

0

‖∇ûN‖p
p dt = E

N−1∑
k=0

∫ tk+1

tk

∥∥∥∥∇uk+1 −∇uk

τ
(t− tk) + ∇uk

∥∥∥∥p

p

dt

� E

N−1∑
k=0

(∫ tk+1

tk

t− tk
τ

‖∇uk+1‖p
p dt+

∫ tk+1

tk

tk+1 − t

τ
‖∇uk‖p

p dt
)

=
τ

2
E

N−1∑
k=0

(‖∇uk+1‖p
p + ‖∇uk‖p

p

)
� C +

τ

2
‖∇u0‖p

p � C

and this yields the second inequality of (2.16). �

Lemma 2.4. There exists a constant K � 0 such that

E max
n=0,...,N

‖un‖2
2 � K. (2.18)

In particular, from (2.18) it follows that there exists a possibly different, but not rela-
belled constant K � 0 such that E supt∈[0,T ] ‖ûN‖2

2 < K and E supt∈[0,T ] ‖ur
N‖2

2 < K
for all N ∈ N

∗.

Proof. Taking uk+1 as a test function in (2.1), using (A2), Gauss–Green’s theorem
on the convection term and Hölder’s and Young’s inequalities we get

‖uk+1‖2
2 − ‖uk‖2

2 � 2τ‖κ‖1 + ‖ΦkΔk+1W‖2
2 + 2(ΦkΔk+1W,u

k)2. (2.19)

Summing over k = 0, . . . , n− 1 with n ∈ {1, . . . , N} in (2.19) and applying we get

‖un‖2
2 − ‖u0‖2

2 � 2T‖κ‖1 +
n−1∑
k=0

‖ΦkΔk+1W‖2
2 + 2

n−1∑
k=0

(ΦkΔk+1W,u
k)2

and therefore, applying lemma A.1, taking the maximum over 0, . . . , n and then
taking expectation we arrive at

E max
n=0,...,N

‖un‖2
2 � ‖u0‖2

2 + 2T‖κ‖1 +
N−1∑
k=0

E‖ΦkΔk+1W‖2
2

+ 2E

(
max

n=1,...,N

n−1∑
k=0

(ΦkΔk+1W,u
k)2

)
= ‖u0‖2

2 + 2T‖κ‖1 + I1 + I2, (2.20)

where, by Itô’s isometry, I1 =
∑N−1

k=0 E‖∫ tk+1

tk
Φk dW (t)‖2

2 �TE‖Φ‖2
C([0,T ];HS(L2(D))).

We have
∑n−1

k=0(ΦkΔk+1W,u
k)2 =

∫ tn

0
(ΦN , u

l
N )2 dW (t), where ul

N is the piecewise
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constant, left-continuous function defined by ul
N (t) = uk for t ∈ (tk, tk+1],

k = 0, . . . , N − 1. Thus,

I2 = 2E max
n=1,...,N

∫ tn

0

(ΦN , u
l
N )2 dW (t) � 2E max

n=1,...,N

∣∣∣∣∫ tn

0

(ΦN , u
l
N )2 dW (t)

∣∣∣∣ .
(2.21)

Now, by Burkholder’s and Hölder’s inequalities it follows from (2.21)

I2 � 6E

(∫ T

0

‖(ΦN , u
l
N )2‖2

HS(L2(D);R) dt

)1/2

� 6E

[
max

n=0,...,N
‖un‖2

√
T‖Φ‖C([0,T ];HS(L2(D)))

]
. (2.22)

Using Young’s inequality with α > 0 from (2.22), it follows that

I2 � 3αE max
n=0,...,N

‖un‖2
2 +

3T
α

E‖Φ‖2
C([0,T ];HS(L2(D)))

� 3αE max
n=0,...,N

‖un‖2
2 + 3α‖u0‖2

2 +
3T
α

E‖Φ‖2
C([0,T ];HS(L2(D))).

Plugging the estimates for I1 and I2 into (2.20), choosing α > 0 such that
1 − 3α > 0, the assertion follows. �

Lemma 2.5. There exists K � 0 not depending on N ∈ N
∗ such that

E

∫ T

0

∥∥∥∥ d
dt

(ûN − M̂N )
∥∥∥∥p′

W−1,p′ (D)

dt � K. (2.23)

Proof. We fix k = 0, . . . , N − 1. For all t ∈ (tk, tk+1),

d
dt

(ûN − M̂N ) = div(a(x, uk+1,∇uk+1) + F (uk+1)). (2.24)

For any v ∈W 1,p
0 (D), using (A2) we get∫

D

|(a(x, uk+1,∇uk+1) + F (uk+1)) · ∇v|dx

�
∫

D

(C2
a |∇uk+1|p−1 + C3

a |uk+1|p−1 + g(x) + L|uk+1|)|∇v|dx = I1 + I2,

(2.25)

where L > 0 is the Lipschitz constant of F . Thanks to Young’s and Poincaré’s
inequalities, a positive constant C1 exists such that

I1 =
∫

D

(C2
a |∇uk+1|p−1 + C3

a |uk+1|p−1 + g(x))|∇v|dx

� C1

p′
(‖∇uk+1‖p

p + ‖g‖p′
p′) +

1
p
‖v‖p

W 1,p
0 (D)

. (2.26)

https://doi.org/10.1017/prm.2020.13 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.13


276 Guy Vallet and Aleksandra Zimmermann

Since p∗ > p′, Lp∗
(D) ⊂ Lp′

(D) with continuous injection. Therefore, using
Hölder’s, Sobolev’s and Young’s inequalities, we get

I2 = L

∫
D

|uk+1||∇v|dx � C2

p
‖∇uk+1‖p

p +
1
p′
‖v‖p′

W 1,p
0 (D)

(2.27)

for a constant C2 � 0. Using (2.24), (2.25), (2.26) and (2.27) and taking expectation
it follows that

E

∫ T

0

∥∥∥∥ d
dt

(ûN − M̂N )
∥∥∥∥p′

W−1,p′ (D)

dt � TC3

p′
‖g‖p′ + T + C3Eτ

N−1∑
k=0

‖∇uk+1‖p
p

=
TC

p′
‖g‖p′ + T + CE

∫ T

0

‖∇ur
N‖p

p dt (2.28)

for a constant C3 � 0. Now, the assertion follows from (2.16) of lemma 2.3. �

Lemma 2.6. There exists a constant K � 0 such that

E

∫ T

0

‖ur
N − ûN‖2

2 dt � Kτ. (2.29)

Proof. We have E
∫ T

0
‖ur

N − ûN‖2
2 dt = τ/3

∑N−1
k=0 E‖uk+1 − uk‖2

2 and the assertion
follows from (2.13) of lemma 2.3. �

Lemma 2.7. There exists γ > 0 and K � 0 not depending on N ∈ N
∗ such that

E sup
k∈{0,...,N−1}

sup
s∈[tk,tk+1]

∥∥∥∥∫ s

tk

ΦN dW (t)
∥∥∥∥2

L2(D)

� Kτγ . (2.30)

Proof. We fix k ∈ {0, . . . , N − 1} and s ∈ [tk, tk+1]. Then we have∥∥∥∥∫ s

tk

ΦN dW (t)
∥∥∥∥2

L2(D)

� C‖Φk‖2
L2(D)‖W (s) −W (tk)‖2

U , (2.31)

where C � 0 is a constant that may change from line to line. Now, from [7], [14,
example 2.4.1] for any q � 1 and α > 1/q, it follows that

‖W (s) −W (tk)‖U � Cτα−1/q

(∫ T

0

∫ T

0

‖W (t) −W (r)‖q
U

|t− r|αq+1
dtdr

)1/q

= Cτα−1/qX1/q

where U is defined in (1.2) and X :=
∫ T

0

∫ T

0
((‖W (t) −W (r)‖q

U )/|t− r|αq+1) dtdr
is a real-valued random variable. Consequently,

‖W (s) −W (tk)‖2
U � Cτ2(α−1/q)X2/q. (2.32)
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Plugging (2.32) into (2.31), we get

sup
k∈{0,...,N−1}

sup
s∈[tk,tk+1]

∥∥∥∥∫ s

tk

ΦN dW (t)
∥∥∥∥2

L2(D)

� C

(
sup

k∈{0,...,N−1}
‖Φk‖2

HS(L2(D))

)
sup

k∈{0,...,N−1}
sup

s∈[tk,tk+1]

‖W (s) −W (tk)‖2
U

� CτγX2/q sup
t∈[0,T ]

‖Φ(t)‖2
L2(D) (2.33)

for any q � 1, α > 1/q, γ := 2(α− 1/q) > 0. For q > 2 with Jensen’s inequality, it
follows that

E(X2/q) � (E(X))2/q =

(∫ T

0

∫ T

0

E‖W (t) −W (r)‖q
U

|t− r|αq+1
dtdr

)2/q

. (2.34)

Since E‖W (t) −W (r)‖q
U � C|t− r|q/2, for some c � 0 one gets, for q > 2 and

α ∈ (1/q, 1
2 )

E(X) � C

∫ T

0

∫ T

0

|t− r|q/2−αq−1 dtdr < +∞. (2.35)

Taking expectation in (2.33) and using (2.34) and (2.35), (2.30) holds true. �

As a consequence, we can estimate the difference between the piecewise affine
and the time-continuous approximations of the stochastic integral:

Lemma 2.8. There exist constants γ > 0, K � 0 such that, for all N ∈ N
∗,

E sup
t∈[0,T ]

‖MN (t) − M̂N (t)‖2
2 � Kτγ . (2.36)

Proof. We fix N ∈ N
∗. For k ∈ {0, . . . , N − 1} and t ∈ [tk, tk+1)

‖MN (t) − M̂N (t)‖2
2 =

∥∥∥∥∫ t

tk

ΦN dW (s) − t− tk
τ

∫ tk+1

tk

ΦN dW (s)
∥∥∥∥2

2

� C

∥∥∥∥∫ t

tk

ΦN dW (s)
∥∥∥∥2

2

+
∥∥∥∥∫ tk+1

tk

ΦN dW (s)
∥∥∥∥2

2

and therefore

sup
t∈[0,T ]

‖MN (t) − M̂N (t)‖2
2 � 2 sup

k=0,...,N−1
sup

t∈[tk,tk+1)

∥∥∥∥∫ t

tk

ΦN dW (s)
∥∥∥∥2

2

and the assertion follows from lemma 2.7. �
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2.3. Convergence of approximate solutions

2.3.1. Tightness In the multiplicative noise case, the stochastic integral inherits the
spatial Sobolev regularity from the solution. In the additive noise case, this is not
possible and the compactness argument for processes with values in L2(D) is more
subtle.

Lemma 2.9. limN→∞MN = limN→∞ M̂N =
∫ ·
0
ΦdW (t) in L2(Ω; C([0, T ];L2(D)).

Proof. From Burkholder–Davies–Gundy’s inequality it follows that

E sup
[0,T ]

∥∥∥∥∫ t

0

ΦN − ΦdW (s)
∥∥∥∥2

2

� E

∫ T

0

‖ΦN − Φ‖2
2 ds. (2.37)

Since ΦN → Φ for N → ∞ in L2(Ω;L2(0, T ;HS(L2(D))), the right-hand side of
(2.37) converges to 0 when N → ∞. Now, the convergence result for (M̂N ) is a
direct consequence of lemma 2.8. �

Lemma 2.10. For N ∈ N
∗, let μN be the law of

XN := (ûN , ûN − M̂N ,MN , M̂N ,ΦN ,W ).

Then, (μN )N∈N∗ is a uniformly tight sequence.

Proof. By lemma 2.9, M̂N converges to
∫ ·
0
ΦdW (s) in L2(Ω; C([0, T ];L2(D))), thus

also in law. Since C([0, T ];L2(D)) is a Polish space, from the theorem of Prokhorov,
it follows that for any ε > 0, there exists a compact set K1

ε ⊂ C([0, T ], L2(D)) such
that P [M̂N /∈ K1

ε ] < ε, for all N ∈ N
∗. For the same reason, P [MN /∈ K1

ε ] < ε for all
N ∈ N

∗, for the same compact set. Since ΦN → Φ in L2(Ω;L2(0, T ;HS(L2(D))))
for N → ∞, with similar arguments, it follows that for any ε > 0, there exists a
compact set K2

ε ⊂ L2(0, T ;HS(L2(D))) such that P [ΦN /∈ K2
ε ] < ε for all N ∈ N

∗.
Moreover, for any ε > 0, there exists a compact set K3

ε ⊂ C([0, T ];U), where U is
defined in (1.2), such that P [W /∈ K3

ε ] < ε. From lemmas 2.4 and 2.5, it follows that
ûN − M̂N is bounded in L2(Ω; C([0, T ];L2(D))) and (d/dt)(ûN − M̂N ) is bounded
in Lp′

(Ω × (0, T );W−1,p′
(D)), thus (ûN − M̂N ) is bounded in Lmin{2,p′}(Ω;W),

where

W :=
{
u ∈ L2(0, T ;L2(D))

∣∣∣∣ d
dt
u ∈ Lp′

(0, T ;W−1,p′
(D))

}
and this space is compactly embedded into C([0, T ];W−1,p′

(D)) by [13, corollary 1].
Therefore, from Markov inequality, it follows that for any ε > 0, there exists Mε > 0
and K4

ε = BW(0,Mε) such that P [ûN − M̂N /∈ K4
ε ] < ε, for all N , with the addi-

tional information that K4
ε is a relatively compact set in C([0, T ];W−1,p′

(D)).
Thanks to lemma 2.3, (ûN ) is bounded in Lp(Ω, Lp(0, T ;W 1,p

0 (D))), thus again,
using Markov inequality, we obtain: for any ε > 0, there exists M > 0 such that
P [‖ûN‖Lp(0,T ;W 1,p

0 (D)) > M ] < ε for all N ∈ N
∗. Then, for ε > 0, we can define
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Kε := B̄(0,M)Lp(0,T ;W 1,p
0 (D)) ×K4

ε ×K1
ε ×K1

ε ×K2
ε ×K3

ε and

K̃ε :=
(
B̄(0,M)Lp(0,T ;W 1,p

0 (D)) ∩ [K4
ε +K1

ε ]
)
×K4

ε ×K1
ε ×K1

ε ×K2
ε ×K3

ε .

Consequently, if μN is the law of XN = (ûN , ûN − M̂N ,MN , M̂N ,ΦN ,W ), on one
hand we have

μN (Kε) = P
[
X−1

N (Kε)
]

= P
[
{ûN ∈ B̄(0,M)Lp(0,T ;W 1,p

0 (D))} ∩ {ûN − M̂N ∈ K4
ε } ∩ {MN ∈ K1

ε }

∩ {M̂N ∈ K1
ε } ∩ {ΦN ∈ K2

ε } ∩ {W ∈ K3
ε }
]

= 1 − P
[
{ûN /∈ B̄(0,M)Lp(0,T ;W 1,p

0 (D))} ∪ {ûN − M̂N /∈ K4
ε }

∪ {MN /∈ K1
ε } ∪ {M̂N /∈ K1

ε } ∪ {ΦN /∈ K2
ε } ∪ {W /∈ K3

ε }
]

� 1 − 6ε

for all N ∈ N
∗. On the other hand, since ûN = ûN − M̂N + M̂N ,

μN (Kε) = P
[
X−1

N (Kε)
]

= P
[
{ûN − M̂N + M̂N ∈ B̄(0,M)Lp(0,T ;W 1,p

0 (D))} ∩ {ûN − M̂N ∈ K4
ε }

∩ {MN ∈ K1
ε } ∩ {M̂N ∈ K1

ε } ∩ {ΦN ∈ K2
ε } ∩ {W ∈ K3

ε }
]

= P
[
{ûN ∈ B̄(0,M)Lp(0,T ;W 1,p

0 (D)) ∩ (K4
ε +K1

ε )} ∩ {ûN − M̂N ∈ K4
ε }

∩ {MN ∈ K1
ε } ∩ {M̂N ∈ K1

ε } ∩ {ΦN ∈ K2
ε } ∩ {W ∈ K3

ε }
]

= P
(
X−1

N (K̃ε)
)

= μN (K̃ε).

Note that by [13, lemma 9], B̄(0,M)Lp(0,T ;W 1,p
0 (D)) ∩ (K4

ε +K1
ε ) is relatively com-

pact in L2(0, T, L2(D)) since K4
ε +K1

ε is relatively compact in L2(0, T ;W−1,p′
(D))

and W 1,p
0 (D) is compactly embedded into L2(D). Thus, (μN ) is a uniformly tight

sequence. �

Proposition 2.11. The sequence (νN ) of laws induced by

YN = (ur
N − ûN , ûN , ûN − M̂N ,MN , M̂N ,ΦN ,W )

on the product space

X : = L2(QT ) × L2(QT ) × C([0, T ];W−1,p′
(D)) × C([0, T ];L2(D))

× C([0, T ];L2(D)) × L2(0, T ;HS(L2(D))) × C([0, T ];U),

where U is defined in (1.2), is tight and therefore, passing to a not relabelled
subsequence if necessary, there exist probability measures ν1 on L2(QT ), ν2 on
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C([0, T ];W−1,p′
(D)) and a probability measure

ν :=
(

0, ν1, ν2,L
(∫ ·

0

ΦdW (s)
)
,L
(∫ ·

0

ΦdW (s)
)
,L(Φ),L(W )

)
on X such that νN ⇒ ν, i.e., limN→∞

∫
X f dνN =

∫
X f dν for all f ∈ Cb(X ).

Proof. Note that for all N ∈ N
∗, νN = (L(ur

N − ûN ), μN ) and the tightness of (μN )
follows from lemma 2.10. The tightness of (L(ur

N − ûN )) is a direct consequence of
lemma 2.6 and the converse part of Prokhorov’s theorem. �

2.3.2. Compactness Now, we are in position to apply the theorem of Skorokhod: by
Appendix A.3, there exists a new probability space (Ω′,F ′, P ′)1 such that, passing
to a subsequence if necessary, (YN ) converges almost surely in X . Without changing
the notation of random variables with the same law in order not to overload the
presentation, the semi-implicit Euler scheme (2.1) is satisfied on Ω′.2 Moreover,
remark A.1 and in particular the a priori estimates developed in lemmas 2.2 to 2.6
hold true on (Ω′,F ′, P ′). Thus, on (Ω′,F ′, P ′),

• there exists a L2(QT )-valued random variable u∞ such that L(u∞) = L(ν1) and
limN→∞ ûN = u∞ in L2(QT ) a.s. in Ω′. Then, lemma 2.4 and Vitali’s theorem
yield the convergence of (ûN ) to u∞ in L�(Ω′;L2(QT )) for all 1 � � < 2.

• (ur
N − ûN ) converges a.s. to 0 in L2(QT ) and one proves similarly, or by using

(2.29), that limN→∞ ur
N = u∞ in L2(QT ) a.s. in Ω′ and in L�(Ω′;L2(QT )) for

all 1 � � < 2.

• In particular, the above convergence holds in L�(Ω′ × (0, T );L2(D)) and, up to
a subsequence if necessary, (ur

N (ω, t)) converges to u∞(ω, t) in L2(D), a.e. in
Ω′ × (0, T ).

• There exists a C([0, T ];L2(D))-valued random variable M∞ such that L(M∞)
= L(

∫ ·
0
Φ dW (s)) and limN→∞ M̂N = limN→∞MN = M∞ in C([0, T ];L2(D))

a.s. in Ω′. Using remark A.1, lemma 2.9 and the lemma of Brezis–Lieb (see
appendix), we also obtain the convergence in L2(Ω′; C([0, T ];L2(D))).

• There exists a C([0, T ];HS(L2(D)))-valued random variable Φ∞ such that
L(Φ∞) = L(Φ) and limN→∞ ΦN = Φ∞ in L2(0, T ;HS(L2(D))) a.s. in Ω′.
Again, remark A.1 and Brezis–Lieb’s lemma yield the convergence in
L2(Ω′;L2(0, T ;HS(L2(D)))).

• Further, there exists a C([0, T ];W−1,p′
(D))-valued random variable B∞ on Ω′

such that L(B∞) = ν2 and limN→∞(ûN − M̂N ) = B∞ in C([0, T ];W−1,p′
(D))

a.s. in Ω′ and in L�̃(Ω, C([0, T ];W−1,p′
(D))) for any 1 � �̃ < min(2, p′) by

Vitali’s theorem. Thanks to the previous convergence results, (ûN ) = (ûN −
M̂N + M̂N ) converges a.s. in C([0, T ];W−1,p′

(D)). Thus, B∞ = u∞ −M∞,

1This can be (0, 1) with the Lebesgue σ-field and measure and expectation denoted E
′.

2Note that, because of Skorokhod’s theorem, WN needs to be indexed by N in Ω′.
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u∞ ∈ C([0, T ];W−1,p′
(D)) and lemma 2.4 with Vitali’s theorem yield the

convergence of ûN to u∞ in L�(Ω′; C([0, T ];W−1,p′
(D))) for all 1 � � < 2.

• Finally, there exists a random variable W∞ with values in C([0, T ];U), such
that L(W∞) = L(W ), limN→∞WN = W∞ in C([0, T ];U) a.s. in Ω′ and in
L2(Ω′; C([0, T ];U)) thanks to remark A.1 and Brezis–Lieb’s lemma.

2.3.3. First identifications at the limits Note that WN is (FN
t )-measurable, where

(FN
t ) is the filtration generated by WN and, for any h ∈ U , t ∈ [0, T ], 0 � s � t and

all ψ ∈ Cb(C([0, s];U))

E
′[(WN (t) −WN (s), h)Uψ(WN )] = E[(W (t) −W (s), h)Uψ(W )] = 0,

since W is a (Ft)-martingale. Thus, WN is a (FN
t )-martingale satisfying WN (0) = 0

for all N ∈ N
∗. With similar arguments, one can show that �WN �t= tQ for

all t ∈ [0, T ] and all N ∈ N
∗, where Q is the covariance operator of W . From

Levy’s theorem (see [3, proposition 3.11, p. 75]) it follows that WN is a cylin-
drical Wiener process with values in L2(D) with respect to (FN

t ). In particular
(Ω′,F ′, (FN

t ),P′,WN ) is a stochastic basis in the sense of [4, lemma 2.1, p. 1126].
We recall that we recovered the time discretization scheme in Ω′ and therefore the
following approximate equations hold true: for all N ∈ N

∗, we have

(M̂N − ûN )(t) − u0 −
∫ t

0

div(a(x, ur
N ,∇ur

N ) + F (ur
N )) ds = 0 (2.38)

inW−1,p′
(D) for all t ∈ [0, T ], a.s. in Ω′. Thanks to lemma 2.3, we have the following

weak convergences:

Lemma 2.12. Up to a subsequence, ur
N ⇀ u∞ weakly in Lp(Ω′;Lp(0, T ;W 1,p

0 (D)))
for N → ∞. Moreover, there exists G ∈ Lp′

(Ω′ ×QT ) such that a(x, ur
N ,∇ur

N ) ⇀ G

weakly in Lp′
(Ω′ ×QT ).

Now we are ready to pass to the limit in the approximate equations:

Proposition 2.13.

u∞(t) = u0 +
∫ t

0

div(G+ F (u∞)) ds+M∞(t) (2.39)

holds in L2(D) a.s. in Ω′ for all t ∈ [0, T ].

Remark 2.1. Using lemma 2.4, one gets that (ûN ) is bounded in L2(Ω′;L∞(0, T ;
L2(D))), thus in L2

w(Ω′;L∞(0, T ;L2(D))) where w stands for the weak-∗ measur-
ability. Since [5, theorem 8.20.3, p. 606]

L2
w(Ω′;L∞(0, T ;L2(D))) � (L2(Ω′;L1(0, T ;L2(D)))

)∗
,

the theorem of Banach–Alaoglu yields u∞ ∈ L2
w(Ω′;L∞(0, T ;L2(D))). On the other

hand, since ûN converges to u∞ in L�(Ω′; C([0, T ];W−1,p′
(D))), it follows that

u∞ is a random variable with values in the space of weakly continuous functions
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Cw([0, T ];L2(D)) [15, lemma 1.4, p. 263]. In particular, u∞(t) ∈ L2(D) a.s. in Ω′

for all t ∈ [0, T ]. Therefore, (2.39) holds in L2(D), a.s. in Ω′, for all t ∈ [0, T ].

Proof of proposition 2.13. We fix ψ ∈W 1,p
0 (D), ξ ∈ D(0, T ), A ∈ F ′ and use ψξχA

as a test function in (2.38). Integrating over Ω′ we arrive at

∫
A

∫ T

0

〈
d
dt

(ûN − M̂N )(t), ψ
〉

W−1,p′ (D),W 1,p
0 (D)

ξ dtdP ′

+
∫

A

∫ T

0

∫
D

(a(x, ur
n,∇ur

N ) + F (ur
N )) · ∇ψξ dxdtdP ′ = 0. (2.40)

Let us write (2.40) as I1 + I2 + I3 = 0, where

I1 =
∫

A

∫ T

0

〈
d
dt

(ûN − M̂N )(t), ψ
〉

W−1,p′ (D),W 1,p
0 (D)

ξ dtdP ′

=
∫

A

∫ T

0

d
dt

〈(ûN − M̂N )(t), ψ〉W−1,p′ (D),W 1,p
0 (D)ξ dtdP ′

= −
∫

A

∫ T

0

〈(ûN − M̂N )(t), ψ〉W−1,p′ (D),W 1,p
0 (D)ξt dtdP ′,

I2 =
∫

A

∫ T

0

∫
D

a(x, ur
n,∇ur

N ) · ∇ψξ dxdtdP ′,

I3 =
∫

A

∫ T

0

∫
D

F (ur
N ) · ∇ψξ dxdtdP ′.

Since ûN − M̂N converges to u∞ −M∞ in L�̃(Ω′; C([0, T ];W−1,p′
(D))), it follows

that

lim
N→∞

I1 =
∫

A

∫ T

0

〈(û∞ − M̂∞)(t), ψ〉W−1,p′ (D),W 1,p
0 (D)ξt dxdtdP ′.

We recall that, by remark 2.1, (u∞ −M∞)(t) ∈ L2(D) for all t ∈ [0, T ], a.s. in Ω′.
Thus

lim
N→∞

I1 =
∫

A

∫ T

0

∫
D

(u∞ −M∞)∂tξψ dxdtdP ′. (2.41)

According to lemma 2.12 a(x, ur
N ,∇ur

N ) ⇀ G weakly in Lp′
(Ω̂ ×QT )d and therefore

lim
N→∞

I2 =
∫

A

∫ T

0

∫
D

G · ∇ψξ dxdtdP ′. (2.42)

L � 0 being the Lipschitz constant of F , we have, thanks to (2.16)

E
′
∫ T

0

‖F (ur
N )‖p

W 1,p
0 (D)

dt � LE
′
∫ T

0

‖∇ur
N‖p

p dt � C

where C � 0 is a constant not depending on N ∈ N
∗.
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Consequently, there exists H ∈ Lp(Ω′;Lp(0, T ; (W 1,p
0 (D))d)) such that F (ur

N ) ⇀
H weakly in Lp(Ω′;Lp(0, T ;W 1,p

0 (D)d)). Since ur
N → u∞ in L1(Ω′ ×QT ;L2(D)d),

F (ur
n) → F (u∞) holds in L1(Ω′ ×QT ;L2(D)) and H = F (u∞). Now, by Sobolev

embedding, it follows that F (ur
N ) ⇀ F (u∞) weakly in Lp(Ω′;Lp(0, T ;Lp∗

(D)d)).
Since p′ < p∗, we conclude that F (ur

N ) ⇀ F (u∞) weakly in Lp(Ω′;Lp(0, T ;
Lp′

(D)d)). Therefore, it follows that

lim
N→∞

I3 =
∫

A

∫ T

0

∫
D

F (u∞) · ∇ψξ dxdtdP ′. (2.43)

Now, from (2.41)–(2.43) it follows that

−
∫

A

∫ T

0

∫
D

(u∞ −M∞)ξtψ + (G+ F (u∞)) · ∇ψξ dxdtdP ′ = 0 (2.44)

for all A ∈ F̂ , ξ ∈ D(0, T ) and all ψ ∈W 1,p
0 (D).

From (2.44) it follows that (d/dt)(u∞ −M∞) − div(G+ F (u∞)) = 0 in
Lp′

(0, T ;W−1,p′
(D))), a.s. in Ω′. We recall that u∞ ∈ C([0, T ];W−1,p′

(D)) a.s. in
Ω′ and since, a.s. in Ω′, M∞ ∈ C([0, T ];L2(D)), we have

u∞(t) − u∞(0) −
∫ t

0

div(G+ F (u∞)) ds = M∞(t) (2.45)

for all t ∈ [0, T ] in L2(D) a.s. in Ω′. �

Remark 2.2. Note that for any t ∈ [0, T ],

δt : L2(Ω′; C([0, T ];W−1,p′
(D))) → L2(Ω′;W−1,p′

(D)), u 
→ u(t)

is continuous and therefore u∞(0) = limN→∞ ûN (0) = u0 in L2(Ω′;W−1,p′
(D)).

2.4. Martingale identification argument

We denote the augmentation of the filtration σ(W∞(s),Φ∞(s), u∞(s))0�s�t, t ∈
[0, T ] by (F∞

t ). In the following two lemmas, we will show that W∞ is a cylindrical
Wiener process with values in L2(D) with respect to (F∞

t ). To this end, we first
show that W∞ is a (F∞

t )-martingale. Since u∞ is in C([0, T ];W−1,p′
(D)) a.s. in Ω′,

it is a stochastic process and therefore (F∞
t ) is well defined.

Lemma 2.14. W∞ is a (F∞
t )-martingale.

Proof. By definition of (F∞
t ), W∞ is adapted to (F∞

t ). For all t ∈ [0, T ], 0 � s � t,
ψ ∈ Cb(C([0, s];U) × L2(0, s;HS(L2(D))) × L2((0, s) ×D) and h ∈ U

E
′[(W∞(t) −W∞(s), h)Uψ(W∞,Φ∞, u∞)]

= lim
N→∞

E
′[(WN (t) −WN (s), h)Uψ(WN ,ΦN , u

r
N )]

= lim
N→∞

E[(W (t) −W (s), h)Uψ(W,ΦN , u
r
N )] = 0

since ΦN and ur
N are (Ft)-adapted processes for all N ∈ N

∗ and W is a
(Ft)-martingale. �
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Lemma 2.15. W∞ is a cylindrical Wiener process with values in L2(D) with respect
to (F∞

t ).

Proof. Since we already know that W∞ is a (F∞
t )-martingale with W∞(0) = 0,

according to [3, theorem 4.4, p. 89], it is left to show that

�W∞ �t = tQ for all t ∈ [0, T ], (2.46)

where Q is the covariance operator of W . Recall that �WN �t = tQ for all
t ∈ [0, T ] and all N ∈ N

∗. Let U be the Hilbert space defined in (1.2) and (gl)
be an orthonormal basis of U . For all t ∈ [0, T ], 0 � s � t, ψ ∈ Cb(C([0, s];U) ×
L2(0, s;HS(L2(D))) × L2((0, s) ×D) and n,m ∈ N

∗, combining the convergence
results from the previous section with the dominated convergence theorem of
Lebesgue, it follows that

E
′[((W∞, gn, gm)(t) − (W∞, gn, gm)(s) − ((t− s)Q(gn), gm)U )ψ(W∞,Φ∞, u∞)

]
= lim

N→∞
E
′[((WN , gn, gm)(t) − (WN , gn, gm)(s)

− ((t− s)Q(gn), gm)U )ψ(WN ,ΦN , u
r
N )
]

= lim
N→∞

E
[
((W, gn, gm)(t) − (W, gn, gm)(s)

− ((t− s)Q(gn), gm)U )ψ(W,ΦN , u
r
N )
]

= 0,

where (W, gn, gm)(r) := (W (r), gn)U (W (r), gm)U for W (r) ∈ U , r ∈ [0, T ], thus
(2.46) holds true. In particular, (Ω′,F ′, (F∞

t ),P′,W∞) is a stochastic basis in the
sense of [4, lemma 2.1, p. 1126]. �

From §A.3 of the appendix it follows that ΦN is a (FN
t )-predictable process with

values in HS(L2(D)) and that MN (t) =
∫ t

0
ΦN dWN (s). In order to pass to the

limit, we recall the following lemma:

Lemma 2.16. [4, lemma 2.1, p. 1126] Let (Ω,F , P ) be a fixed probability space,
W a cylindrical Wiener process on (Ω,F , P ) with values in L2(D) with respect
to a given filtration (Ft) and X a separable Hilbert space. Consider a sequence of
stochastic bases Sn = (Ω,F , (Fn

t ), P,Wn), that is a sequence so that each Wn is a
cylindrical Wiener process with values in L2(D) with respect to (Fn

t ). Assume that
(Gn) is a collection of HS(L2(D);X)-valued, (Fn

t )-predictable processes such that
Gn ∈ L2(0, T ;HS(L2(D);X)) a.s. in Ω and G ∈ L2(0, T ;HS(L2(D);X)) is (Ft)-
predictable. If Wn →W in probability in C([0, T ];U), where U is given in (1.2) and
Gn → G in probability in L2(0, T ;HS(L2(D);X)), then

lim
n→∞

∫ ·

0

Gn dWn(s) =
∫ ·

0

GdW (s)

in probability in L2(0, T ;X).
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Consequently, we have M∞(t) =
∫ t

0
Φ∞ dW∞(s) for all t ∈ [0, T ], a.s. in Ω′ and

therefore

u∞(t) = u0 +
∫ t

0

div(G+ F (u∞)) ds+
∫ t

0

Φ∞ dW∞(s) (2.47)

in W−1,p′
(D), for all t ∈ [0, T ], a.s. in Ω′. By lemma 2.4 and Itô’s formula (see,

e.g. [10, theorem 4.2.5]), it follows that u∞ is a square-integrable, (F∞
t )-adapted,

continuous process with values in L2(D), and (2.47) holds in L2(D) a.s. in Ω′.

2.5. Monotonicity argument

Lemma 2.17. G = a(x, u∞,∇u∞) in Lp′
(Ω′ ×QT )d.

Proof. Taking uk+1 as a test function in the discretized equation (2.1) in Ω′, using
Gauss–Green’s theorem for the convection term and taking expectation we get

1
2

E
′ (‖uk+1‖2

2 − ‖uk‖2
2 + ‖uk+1 − uk‖2

2

)
+ τE

′
∫

D

a(x, uk+1,∇uk+1) · ∇uk+1 dx

= E
′(MN (tk+1) −MN (tk), uk+1)2. (2.48)

Since E
′(MN (tk+1) −MN (tk), uk)2 = 0, using Young’s inequality in (2.48) we get

E
′ (‖uk+1‖2

2 − ‖uk‖2
2

)
+ 2τE

′
∫

D

a(x, uk+1,∇uk+1) · ∇uk+1 dx

� E
′‖MN (tk+1) −MN (tk)‖2

2. (2.49)

Summing over k = 0, . . . , N − 1 in (2.49) it follows that

E
′
[
‖ûN (T )‖2

2 − ‖u0‖2
2 + 2

∫ T

0

∫
D

a(x, ur
N ,∇ur

N ) · ∇ur
N dxdt

]

−
N−1∑
k=0

E
′
∥∥∥∥∫ tk+1

tk

ΦN dWN (t)
∥∥∥∥2

2

� 0 (2.50)

where, by Itô’s isometry,

N−1∑
k=0

E
′
∥∥∥∥∫ tk+1

tk

ΦN dWN (t)
∥∥∥∥2

2

=
N−1∑
k=0

E
′
∫ tk+1

tk

‖ΦN‖2
HS(L2(D)) dt

= E
′
∫ T

0

‖ΦN‖2
HS(L2(D)) dt. (2.51)

By equality of laws, from (2.50) and (2.51) it follows that

E
′
[
‖ûN (T )‖2

2 − ‖u0‖2
2 + 2

∫ T

0

∫
D

a(x, ur
N ,∇ur

N ) · ∇ur
N dxdt

]

− E
′
∫ T

0

‖ΦN‖2
HS(L2(D)) dt � 0. (2.52)
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On the other hand, Itô’s formula and (2.47) yield

‖u∞(T )‖2
2 − ‖u0‖2

2 + 2
∫ T

0

∫
D

G · ∇u∞ dxdt

=
∫ T

0

‖Φ∞‖2
HS(L2(D)) dt+ 2

∫ T

0

(u∞,Φ∞ dW∞(t))2, (2.53)

a.s. in Ω′, therefore

E
′
[
‖u∞(T )‖2

2 − ‖u0‖2
2 + 2

∫ T

0

∫
D

G · ∇u∞ dxdt

]
− E

′
∫ T

0

‖Φ∞‖2
HS(L2(D)) dt = 0.

From the above equation and (2.52), it follows that (u0 = uτ
0 is given by lemma A.1)

E
′‖u∞(T )‖2

2 + 2E
′
∫ T

0

∫
D

G · ∇u∞ dxdt− E
′
∫ T

0

‖Φ∞‖2
HS(L2(D)) dt

� E
′‖ûN (T )‖2

2 + 2E
′
∫ T

0

∫
D

a(x, ur
N ,∇ur

N ) · ∇ur
N dxdt

− E
′
∫ T

0

‖ΦN‖2
HS(L2(D)) dt+ ‖u0‖2

2 − ‖uτ
0‖2

2, (2.54)

hence

2E
′
∫ T

0

∫
D

G · ∇u∞ dxdt

� E
′ (‖ûN (T )‖2

2 − ‖u∞(T )‖2
2

)
+ E

′
∫ T

0

‖ΦN‖2
HS(L2(D)) − ‖Φ∞‖2

HS(L2(D)) dt

+ 2E
′
∫ T

0

∫
D

a(x, ur
N ,∇ur

N ) · ∇ur
N dxdt+ ‖u0‖2

2 − ‖uτ
0‖2

2. (2.55)

Since ûN converges to u∞ in L�(Ω′; C([0, T ];W−1,p′
(D))) for some 1 � � < 2, for

any t, ûN (t) converges to u∞(t) in L�(Ω′;W−1,p′
(D)). On the other hand, the

sequence ûN (t) is bounded in L2(Ω′ ×D) and one is able to conclude that ûN (t)
converges weakly to u∞(t) in L2(Ω′ ×D). Therefore, by lower semi-continuity,
lim infN→∞ E

′‖ûN (T )‖2
2 � E

′‖u∞(T )‖2
2 and since

E
′
∫ T

0

‖ΦN‖2
HS(L2(D)) dt→ E

′
∫ T

0

‖Φ∞‖2
HS(L2(D)) dt (2.56)

for N → ∞, it follows that

E
′
∫ T

0

∫
D

G · ∇u∞ dxdt � lim sup
N→∞

E
′
∫ T

0

∫
D

a(x, ur
N ,∇ur

N ) · ∇ur
N dxdt

+ lim inf
N→∞

E
′‖ûN (T )‖2

2 − E
′‖u∞(T )‖2

2

� lim sup
N→∞

E
′
∫ T

0

∫
D

a(x, ur
N ,∇ur

N ) · ∇ur
N dxdt. (2.57)
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The next step is to prove that

E
′
∫ T

0

∫
D

G · ∇u∞ dxdt � lim inf
N→∞

E
′
∫ T

0

∫
D

a(x, ur
N ,∇ur

N ) · ∇ur
N dxdt. (2.58)

Following the proof of [12, lemma 8.8, p. 208], for any N ∈ N
∗ and almost every

(ω, t) ∈ Ω′ × (0, T ), we define

ξN (ω, t) :=
∫

D

a(x, ur
N ,∇ur

N ) · ∇(ur
N − u∞) dx

and observe that by (A2) and Young’s inequality, there exist δ, C > 0 such that

ξN (ω, t) � δ

∫
D

|∇ur
N |p dx− C

(∫
D

|∇u∞|p dx+ 1
)

(2.59)

for any N ∈ N
∗, a.s. in Ω′ × (0, T ).

As a direct consequence of (2.59), we get that lim infN→∞ ξN (ω, t) > −∞
a.s. in Ω′ × (0, T ). If we can show that lim infN→∞ ξN (ω, t) � 0, a.s. in Ω′ ×
(0, T ), then (2.58) would follow from Fatou’s lemma. Assume that for a given
(ω, t), lim infN→∞ ξN (ω, t) = a < 0. This yields the existence of a subsequence
N ′ (depending on ω and t) such that limN ′→∞ ξN ′(ω, t) = a < 0, thus ξN ′(ω, t) <
a/2 < 0 after a certain time, considered in the next few lines as the starting point of
the sequence. Then, (2.59) ensures the boundedness of ur

N ′(ω, t) in W 1,p
0 (D). Since

ur
N ′(ω, t) converges to u∞(ω, t) in L2(D), one is able to conclude that ur

N ′(ω, t)
converges also weakly in W 1,p

0 (D). Since the nonlinear operator

A : W 1,p
0 (D) →W−1,p′

(D), u 
→ A(u) := −div a(x, u,∇u)
is pseudomonotone, a = lim infN ′→∞ ξN ′(ω, t) � 0. This is a contradiction and one
concludes that lim infN→∞ ξN (ω, t) � 0, for almost any (ω, t) in Ω′ × (0, T ) and
therefore (2.58) is true. As a consequence of (2.57) and (2.58),

lim
N→∞

E
′
∫ T

0

∫
D

a(x, ur
N ,∇ur

N ) · ∇ur
N dxdt = E

′
∫ T

0

∫
D

G · ∇u∞ dxdt (2.60)

and, for any �ξ ∈ Lp(Ω′ ×QT )d,

lim
N→∞

E
′
∫ T

0

∫
D

a(x, ur
N ,∇ur

N ) · (∇ur
N − �ξ) dxdt = E

′
∫ T

0

∫
D

G · (∇u∞ − �ξ) dxdt.

(2.61)
Since for almost any (ω, t) in Ω′ × (0, T ), lim infN→∞ ξN (ω, t) � 0, one gets that
limN→∞ ξ−N (ω, t) = 0 a.s. in Ω′, where −r− := min(0, r) for r ∈ R. As by (2.59),

0 � −ξ−N � −C
(∫

D

|∇u∞|p dx+ 1
)

∈ L1(Ω′ × (0, T )),

one concludes that ξ−N converges to 0 in L1(Ω′ × (0, T )). From (2.61) in particular we
get limN→∞ E

′ ∫ T

0
ξN dt = 0, and therefore (ξN ) converges to 0 in L1(Ω′ × (0, T )).
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Up to a subsequence denoted by N ′, one can consider that limN ′→∞ ξN ′ = 0 a.s.
in Ω′ × (0, T ) and that there exists Θ ∈ L1(Ω′ × (0, T )) such that |ξN ′ | � Θ for all
N ′ ∈ N

∗ a.e. in Ω′ × (0, T ).
Since ur

N → u∞ for N → ∞ in L2(D) a.e. in Ω′ × (0, T ), (2.59) with the
above majoration by Θ yield the boundedness of ur

N ′(ω, t) in W 1,p
0 (D), thus

ur
N ′(ω, t) ⇀ u∞(ω, t) in W 1,p

0 (D) and ur
N ′(ω, t) → u∞(ω, t) in Lp(D) for almost

every (ω, t) ∈ Ω′ × (0, T ). By assumption (A2), for any �ξ ∈ Lp(Ω′ ×QT )d, the prop-
erties of Nemytskii’s operators yield a(x, ur

N ′(ω, t), �ξ) → a(x, u∞(ω, t), �ξ) in Lp′
(D)

for almost every (ω, t) ∈ Ω′ × (0, T ) and for N ′ → ∞, so that

lim
N ′→∞

∫
D

a(x, ur
N ′ , �ξ) · (∇ur

N ′ − �ξ) dx =
∫

D

a(x, u∞, �ξ) · (∇u∞ − �ξ) dx (2.62)

a.e. in Ω′ × (0, T ). The same assumption ensures, for almost every (ω, t) ∈ Ω′ ×
(0, T ), the boundedness of the sequence (a(x, ur

N ′(ω, t),∇ur
N ′(ω, t))) in Lp′

(D) and,
up to a subsequence denoted N ′′ (depending a priori on (ω, t)), the weak con-
vergence of a(x, ur

N ′′(ω, t),∇ur
N ′′(ω, t)) to some θ(ω, t) in Lp′

(D). By assumption
(A1),

0 �
∫

D

(a(x, ur
N ′′ ,∇ur

N ′′) − a(x, ur
N ′′ , �ξ)) · (∇ur

N ′′ − �ξ) dx.

Then, thanks to the above convergence, (2.62) and limN ′→∞ ξN ′ = 0, one gets that
0 �

∫
D

(θ − a(x, u∞, �ξ)) · (∇u∞ − �ξ) dx and Minty’s argument yields

θ(ω, t) = a(x, u∞(ω, t),∇u∞(ω, t)). (2.63)

This implies a(x, ur
N ′(ω, t),∇ur

N ′(ω, t)) ⇀ a(x, u∞(ω, t),∇u∞(ω, t)) weakly in
Lp′

(D), where N ′ can be chosen independently of (ω, t) ∈ Ω′ × (0, T ). Since
limN ′→∞ ξN ′(ω, t) = 0, from (2.63) it follows that for any given �ξ ∈ Lp(Ω ×QT )d,
for almost every (ω, t) ∈ Ω′ × (0, T ),

lim
N ′→∞

∫
D

a(x, ur
N ′(ω, t),∇ur

N ′(ω, t)) · (∇ur
N ′(ω, t) − �ξ(ω, t)) dx

=
∫

D

a(x, u∞(ω, t),∇u∞(ω, t)) · (∇u∞(ω, t) − �ξ(ω, t)) dx. (2.64)

Similarly to (2.59), for �ξ ∈ Lp(Ω ×QT )d,∫
D

a(x, ur
N ,∇ur

N ) · (∇ur
N − �ξ) dx � −C

(∫
D

|�ξ|p dx+ 1
)

(2.65)

a.e. in Ω′ × (0, T ), for all N ∈ N
∗ and, by Fatou’s lemma, from (2.64) and (2.65) it

follows that

lim inf
N ′→∞

E
′
∫ T

0

∫
D

a(x, ur
N ′ ,∇ur

N ′) · (∇ur
N ′ − �ξ) dxdt

� E
′
∫ T

0

∫
D

a(x, u∞,∇u∞) · (∇u∞ − �ξ) dxdt. (2.66)
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Back to (2.61), (2.66) yields

E
′
∫ T

0

∫
D

G · (∇u∞ − �ξ) dxdt � E
′
∫ T

0

∫
D

a(x, u∞,∇u∞) · (∇u∞ − �ξ) dxdt

for any �ξ ∈ Lp(Ω ×QT )d, and therefore it follows that G = a(·, u∞,∇u∞). �

3. Uniqueness and existence of strong solutions

In this section, we show the existence of strong solutions adapting the argument of
Gyöngy and Krylov (see [8]). First, we show a pathwise L1-contraction principle:

Proposition 3.1. Assume that for a given stochastic basis (Ω,F , (Ft), P ) and for
an arbitrary Φ ∈ L2(Ω × (0, T );HS(L2(D))) there exist solutions u1, u2 to (1.1)
with respect to the initial values u01 and u02 in L2(D) respectively. Then,∫

D

|u1(t) − u2(t)|dx �
∫

D

|u01 − u02|dx (3.1)

for all t ∈ [0, T ], a.s. in Ω.

Proof. For δ > 0, consider ηδ, the Lipschitz approximation of the sign function
defined by ηδ(r) = max(−1,min(r/δ, 1)). Now, for δ > 0 and r ∈ R we define
Nδ(r) :=

∫ r

0
ηδ(s) ds. Subtracting the equation for u2 from the equation for u1,

the noise terms are eliminated and one gets pathwise the PDE

∂t(u1 − u2) − div[a(·, u1,∇u1) − a(·, u2,∇u2) + F (u1) − F (u2)] = 0.

Testing the equation with ηδ(u1(t) − u2(t)), we get I1 = I2 + I3 for all t ∈ [0, T ] a.s.
in Ω, where

I1 =
∫

D

Nδ(u1 − u2)(t) dx−
∫

D

Nδ(u01 − u02) dx,

I2 = −
∫ t

0

∫
D

(a(x, u1,∇u1) − a(x, u2,∇u2) · ∇(u1 − u2)η′δ(u1 − u2) dxds,

I3 = −
∫ t

0

∫
D

(F (u1) − F (u2)) · ∇(u1 − u2)η′δ(u1 − u2) dxds,

(3.2)

and η′δ(u1 − u2) = 1/δχ{|u1−u2|<δ} � 0 for any δ > 0. Now we write I2 = I2,1 + I2,2

where, by (A1)

I2,1 = −
∫ t

0

∫
D

(a(x, u1,∇u1) − a(x, u1,∇u2)) · ∇(u1 − u2)η′δ(u1 − u2) dxds � 0.
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Using (A3) and Hölder’s inequality we get

|I2,2| =
∣∣∣∣∫ t

0

∫
D

(a(x, u1,∇u2) − a(x, u2,∇u2)) · ∇(u1 − u2)η′δ(u1 − u2) dxds
∣∣∣∣

�
∫ t

0

∫
D

(C4
a |∇u2|p−1 + h(x))|u1 − u2||∇(u1 − u2)|η′δ(u1 − u2) dxds

� C

(∫
{|u1−u2|}<δ

|∇(u1 − u2)|p dxds

)1/p

,

where C � 0 is a constant not depending on δ > 0. Therefore, limδ→0+ I2,2 = 0
and consequently it follows that lim supδ→0+ I2 � 0 for all t ∈ [0, T ], a.s. in Ω.
Since Nδ(u1 − u2)(t) converges to |(u1 − u2)(t)| for δ → 0+, and |Nδ(u1 − u2)(t)| �
|(u1 − u2)(t)| for all δ > 0, it follows that

lim
δ→0+

I1 =
∫

D

|u1(t) − u2(t)|dx−
∫

D

|u01 − u02|dx (3.3)

for any t ∈ [0, T ] a.s. in Ω. For L � 0 being the Lipschitz constant of F we have

|I3| � 1
δ

∫
{|u1−u2|<δ}

|F (u1) − F (u2)| |∇(u1 − u2)|dxds

� L

δ

∫
{|u1−u2|<δ}

|u1 − u2| |∇(u1 − u2)|dxds

� L

∫
{|u1−u2|<δ}

|∇(u1 − u2)|dxds,

and it follows, by arguments similar to the ones on p. 6, that limδ→0+ I3 =∫
{u1=u2} |∇(u1 − u2)|dxds = 0 a.s. in Ω and the result holds true. �

In particular, proposition 3.1 implies that whenever a solution (in the sense of
definition 1.1) to (1.1) exists, it is unique. The following lemma (see, e.g. [8, lemma
1.1, pp. 144–145]) contains a suitable necessary and sufficient condition for strong
convergence:

Lemma 3.2. Let V be a Polish space equipped with the Borel σ-algebra. A sequence
of V -valued random variables (Xn) converges in probability if and only if for every
pair of subsequences (Xl) and (Xm) there exists a joint subsequence (Xlk ,Xmk

)
which converges for k → ∞ in law to a probability measure μ such that μ({(w, z) ∈
V × V | w = z}) = 1.

Lemma 3.3. The sequence of piecewise affine approximations (ûN ) converges in
probability on (Ω,F , P ) and there exists a strong solution to (1.1).

Proof. We apply lemma 3.2 to prove the assertion. Let (ûK), and (ûL) be a pair of
subsequences of (ûN ). Then, repeating the arguments of § 2.3, it follows that the
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random vector (YK,L) defined by

(ur
K − ûK , ûK , ûK − M̂K ,MK , M̂K ,ΦK , u

r
L − ûL, ûL, ûL − M̂L,ML, M̂L,ΦL,W )

is tight on the appropriate product space, and therefore relatively compact; thus we
can extract a joint subsequence (YKj ,Lj

) which converges in law. Thus, in particular,
there exist probability measures μ1, μ2 such that (μ1, μ2) = limj→∞ L(ûKj

, ûLj
).

Now we continue as in §§ 2.3, 2.4 and 2.5: passing to a new probability space
(Ω′,F ′, P ′) and not changing notation for random variables with the same law,
we find random variables u1

∞, u2
∞ such that L(u1

∞) = μ1, L(u2
∞) = μ2 and,

since we have the strong convergences of M̂N ,MN and ΦN , it implies that
M̂Kj

,MKj
, M̂Lj

,MLj
and ΦKj

,ΦLj
are converging to the same limits and

ui
∞(t) − u0 −

∫ t

0

div(a(x, ui
∞,∇ui

∞) + F (ui
∞)) ds =

∫ t

0

Φ∞ dW∞(s)

for i = 1, 2, where W∞ is a cylindrical (F∞
t )-Wiener process and (F∞

t ) is the
augmentation of the filtration σ(Φ(s),W∞(s), u1

∞(s), u2
∞(s))0�s�t, t ∈ [0, T ]. Now,

from proposition 3.1 it follows that u1
∞ = u2

∞ in L2(Ω′; C([0, T ]L2(D))) and for the
joint law (μ1, μ2) on C([0, T ];W−1,p′

(D))2 it follows that

(μ1, μ2)
(
{(w, z) ∈ C([0, T ];W−1,p′

(D)) × C([0, T ];W−1,p′
(D)) | w = z}

)
= 1

and the convergence in probability of the sequence (ûN ) follows from lemma 3.2.
Again, since we have the strong convergence of M̂N ,MN and ΦN in Ω, it is possible
to recover the steps of the proof of existence of a solution in Ω and therefore a
strong solution exists. �

Appendix A. On the regularization of the initial condition

Lemma A.1. For any positive τ, there exists uτ
0 ∈W 1,p

0 (D) such that (uτ
0) converges

to u0 in L2(D) for τ → 0+ and satisfies 1
2‖uτ

0‖2
L2(D) + τ‖∇uτ

0‖p
p � 1

2‖u0‖2
L2(D).

Proof. Denote by uτ the unique solution in W 1,p
0 (D) to the problem uτ − τΔpu

τ =
u0. Using the solution uτ as a test function in the equation, one gets

‖uτ‖2
L2(D) + τ‖∇uτ‖p

p =
∫

D

u0u
τ dx � 1

2
‖u0‖2

L2(D) +
1
2
‖uτ‖2

L2(D),

and consequently, up to a not relabelled subsequence, (uτ ) converges weakly in
L2(D) to a given v with the additional information that ‖uτ‖L2(D) � ‖u0‖L2(D).
Therefore, for any ϕ ∈ D(D), one has∫

D

u0ϕdx =
∫

D

uτϕdx+ τ

∫
D

|∇uτ |p−2∇uτ∇ϕdx→
∫

D

vϕdx

and therefore (uτ ) converges to v = u0 in the sense of distributions and weakly
in L2(D). As a consequence, the whole sequence (uτ ) converges to u0 weakly in
L2(D) and strongly in L2(D) thanks to the uniform convexity property and the
above inequality. Therefore, uτ

0 := uτ for all τ > 0. �
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A.1. The lemma of Brezis–Lieb

Lemma A.2. Let (Ω,F , P ) be a probability space (un) ⊂ L2(Ω;X) where X is a
separable Banach space such that un → u in X a.s. in Ω for some u ∈ L2(Ω;X)
and supn E‖un‖2

X =: M < +∞. Then,

lim
n→∞ E(‖un‖2

X − ‖un − u‖2
X) = E‖u‖2

X . (A.1)

In particular, without using any argument of uniform convexity, a.s. convergence of
(un) to u in X and limn→∞ E‖un‖2

X = E‖u‖2
X yields the convergence of (un) to u

in L2(Ω;X).

Proof. For n ∈ N
∗ and ε > 0 we define Xn :=

∣∣∣‖un‖2
X − ‖un − u‖2

X − ‖u‖2
X

∣∣∣, Y ε
n :=

(Xn − ε‖un‖2
X)+. For all n ∈ N

∗ we have

Xn � ‖u‖2
X +

∣∣∣‖un‖X − ‖un − u‖X

∣∣∣(‖un‖X + ‖un − u‖X)

� ‖u‖2
X + ‖u‖X(‖un‖X + ‖un − u‖X)

� ‖u‖2
X + 2‖u‖X‖un‖X + ‖u‖2

X � ‖u‖2
X +

1
ε
‖u‖2

X + ε‖un‖2
X + ‖u‖2

X

=
(

2 +
1
ε

)
‖u‖2

X + ε‖un‖2
X (A.2)

and from (A.2) it follows that there exists a constant Cε � 0 not depending on n ∈
N

∗ such that 0 � Y ε
n � Cε‖u‖2

X for all n ∈ N
∗, a.s. in Ω. Since limn→∞ ‖un − u‖2

X =
0 a.s. in Ω, it follows that limn→∞ Y ε

n = 0. Combining these two results, we get that
the convergence also holds in L1(Ω). Now, E[Xn] = E[Xn − ε‖un‖2

X ] + εE‖un‖2
X �

E[Yn] + εM , and therefore it follows that lim supn→∞ E[Xn] � εM , for any ε > 0.
Therefore we get lim supn→∞ E[Xn] � 0 and this yields (A.1). �

A.2. Some technical tools

A.2.1. Laws and subsets

Lemma A.3. Let (Ω, A, P ) and (Ω̃, Ã, P̃ ) be complete probability spaces, E, F be
separable Banach spaces with a continuous embedding of F in E and consider X :
Ω → E and X̃ : Ω̃ → E, two random variables with the same law on E.

If X takes values in F, then it is a random variable with values in F . Moreover,
X̃ is also a random variable with values in F , with the same law on F .

Proof. Assume that X(Ω) ⊂ F . By [16, theorem 1.1, p. 5], B(F ) ⊂ B(E) and X :
Ω → F is a random variable. Moreover, F ∈ B(E) and 0 = P [X /∈ F ] = P̃ [X̃ /∈ F ]
thus it follows that X̃(Ω̃) ⊂ F . The same argument yields that X̃ : Ω̃ → F is a
random variable and that X and X̃ have the same law on F , namely the restriction
of their law to F . �

A.2.2. On predictability Let (Ω, A, P ) be a complete probability space, E,F be sep-
arable Banach spaces, andX : Ω × [0, T ] → E a process with continuous trajectories
and denote by (Ft) its natural filtration.
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Lemma A.4. For any t ∈ [0, T ], denote by X|[0,t] : Ω → C([0, t];E), ω 
→ X(ω, ·).
Then, σ{X|[0,t]}, the sigma algebra generated by the random variable X|[0,t], is Ft.

Proof. Since X is continuous with respect to t and adapted to (Ft), it is progres-
sively measurable, thus ∀t ∈ [0, T ], X : Ω × [0, t] → E is Ft ×B(0, t) measurable.
Therefore, X : Ω × [0, t] → E is a Carathéodory function on (Ω,Ft) × [0, t] to E,
and thanks to [1, theorem 1], the random variable X|[0,t] : Ω → C([0, t];E), ω 
→
X(ω, ·) is Ft-measurable. Hence, σ{X|[0,t]} ⊂ Ft.

On the other hand, for any s ∈ [0, t], the mapping δs : C([0, t];E) → E, g 
→ g(s)
is continuous. Thus, ω 
→ X(ω, s) = δs(X|[0,t](ω)) is σ{X|[0,t]} measurable for any
such s and σ{X|[0,t]} = Ft. �

Denote by Y : Ω → F a Ft-measurable random variable. Then, Y is σ{X|[0,t]}
measurable and, by [9, lemma 1.13 p. 7],3 there exists a Borel function h from
C([0, t], E) to F such that Y = h(X|[0,t]).

Denote by ψ the nonnegative mapping defined on C([0, T ];E) × F by ψ(u, v) =
‖h[u|[0,t]] − v‖F where u|[0,t] denotes the restriction to [0, t] of u. The mapping
u 
→ u|[0,t] is continuous from C([0, T ];E) into C([0, t];E), and h is a Borel function
from C([0, t];E) into F . Therefore, (u, v) 
→ h[u|[0,t]] − v is a Borel function from
C([0, T ];E) × F into F , hence ψ is a Borel function.

Consider another complete probability space (Ω̃, Ã, P̃ ), a random variable Ỹ :
Ω̃ → F , and a pathwise continuous process X̃ : Ω̃ × [0, T ] → E with its natural
filtration (F̃t).

Lemma A.5. If (X,Y ) and (X̃, Ỹ ) have the same law, Ỹ is F̃t-measurable.

Proof. Indeed, E[ψ(X,Y )] = Ẽ[ψ(X̃, Ỹ )] and since 0 = E[ψ(X,Y )], one has also
Ẽ[ψ(X̃, Ỹ )] = 0. Therefore, Ỹ = h(X̃|[0,t]) and Ỹ is σ{X̃|[0,t]}, thus F̃t-measurable
since what has been developed above for X holds also for X̃. �

A similar result holds concerning continuous processes:

Lemma A.6. If Y : Ω × [0, T ] → F and Ỹ : Ω̃ × [0, T ] → F are continuous pro-
cesses such that Y is (Ft)-adapted and (X,Y ), (X̃, Ỹ ) have the same law μ on
C([0, T ];E) × C([0, T ];F ), then Ỹ is (F̃t)-predictable.

Proof. Indeed, Y is also progressively measurable and, for any t, Y|[0,t] : (Ω,Ft) →
C([0, t], F ), ω 
→ Y (ω, ·) is measurable, thus σ{X|[0,t]} measurable. Then, there
exists a Borel function ht such that Y|[0,t] = ht(X|[0,t]). By using the above idea,
for given (u, v) ∈ C([0, T ];E) × C([0, T ];F ), ψ(u, v) = ‖h[u|[0,t]] − v|[0,t]‖C([0,t],F ) is a
non-negative Borel function and 0 = E[ψ(X|[0,t], Y|[0,t])] = Ẽ[ψ(X̃|[0,t], Ỹ|[0,t])]. Thus,
Ỹ|[0,t] is X̃|[0,t] measurable, thus F̃t measurable, and, as a Carathéodory function,
it is progressive, then predictable. �

3[9, lemma 1.13, p. 7]: fix two measurable functions f and g from a measurable space (Ω,A)
into some measurable Borel spaces (S,S) and (T, T ). f is g-measurable (i.e. σ(f) ⊂ σ(g)) if and
only if there exists some measurable mapping h : T → S with f = h ◦ g.

https://doi.org/10.1017/prm.2020.13 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.13


294 Guy Vallet and Aleksandra Zimmermann

A.3. From Ω to Ω′

In this section, we are interested in proving that the time discretization scheme
is preserved by changing the probability space. Following the notations of §§ 2.3.1
and 2.3.2, by Skorokhod representation, we consider a vector of random elements
Y ′

N = (u
′r
N − û′N , û

′
N , û

′
N − M̂ ′

N ,M
′
N , M̂

′
N ,Φ

′
N ,W

′
N ) with the same law νN as YN

on X . Let us notice that thanks to Appendix A.2.1, YN and Y ′
N have both the

same law on [L2(QT ) ∩ Lp(0, T ;W 1,p
0 (D))]2 ×W 1,q,p′

(0, T ;W 1,q
0 (D),W−1,p′

(D)) ×
[C([0, T ];L2(D))]2 × L2(0, T ;HS(L2(D))) × C([0, T ];U) denoted X ′ where q =
min(2, p). Note that the semi-implicit Euler–Maruyama scheme (2.1) means, for
any k,

[ûN − M̂N ](tk+1) − [ûN − M̂N ](tk) −
∫ tk+1

tk

div(a(x, ur
N ,∇ur

N ) + F (ur
N )) dt = 0,

and since for any ϕ ∈ C∞
c (D), the following mapping Ψ defined by

Ψ(YN ) =
∣∣∣∣∫

D

ϕ[ûN − M̂N ](tk+1) − ϕ[ûN − M̂N ](tk)

+
∫ tk+1

tk

(a(x, ur
N ,∇ur

N ) + F (ur
N ))∇ϕdtdx

∣∣∣∣ ,
is a positive Borel function on X ′, one gets that

[û′N − M̂ ′
N ](tk+1) − [û′N − M̂ ′

N ](tk) −
∫ tk+1

tk

div(a(x, u
′r
N ,∇u

′r
N ) + F (u

′r
N )) dt = 0.

For a fixed N ∈ N
∗, ur

N is a W 1,p
0 (D)-valued, right continuous step func-

tion on the fixed time discretization (tk)N
k=0: it can be identified with an

element of W 1,p
0 (D)N by the Borel measurable mapping

∑N
k=1 uk1[tk−1,tk) 
→

(u1, . . . , uN ). By Appendix A.2.1, one concludes that u
′r
N follows the same structure:∑N

k=1 u
′
k1[tk−1,tk) and∫ tk+1

tk

div(a(x, u
′r
N ,∇u

′r
N ) + F (u

′r
N )) dt = τ div(a(x, u′k+1,∇u′k+1) + F (u′k+1)).

By a similar reasoning, Φ′
N , û′N and M̂ ′

N are respectively right continuous step
function and piecewise affine continuous functions for the two last ones. Taking
into account those information, one gets that the discretization is conserved by
changing the probability space, i.e.

u
′k+1 − u

′k − τ div(a(x, u
′k+1,∇u′k+1) + F (u

′k+1)) = Φ′
kΔk+1WN .

Then, by Appendix A.2.2, since Φk is Ftk
measurable where (Ft) is the filtration

generated by W , then, Φ′
k will be F ′

tk
measurable where (F ′

t) is the filtration gen-
erated by WN . Therefore, the time discretization (2.1) is totally recovered and by
the uniqueness of lemma 2.1, u′k is F ′

tk
measurable for any k.
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Remark A.1. Note that, as a by-product, one gets that

E
′‖Φ′

N‖2
L2(0,T ;HS(L2(D))) = E‖ΦN‖2

L2(0,T,HS(L2(D))) → E‖Φ‖2
L2(0,T ;HS(L2(D))),

E
′‖M̂ ′

N‖2
C([0,T ];L2(D)) = E‖M̂N‖2

C([0,T ];L2(D)) → E‖
∫ ·

0

Φ dW (t)‖2
C([0,T ];L2(D))

for N → ∞,

E
′ sup
t∈[0,T ]

‖Φ′
N (t)‖2

HS(L2(D)) = E sup
t∈[0,T ]

‖ΦN (t)‖HS(L2(D)) � E‖Φ‖2
C([0,T ];HS(L2(D))),

E
′‖WN‖2

C([0,T ];U) = E‖W‖2
C([0,T ];U)

for all N ∈ N
∗ and all the a priori estimates developed in lemmas 2.2 to 2.6 remain

true on (Ω′,F ′, P ′).
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approximations. Probab. Theory Relat. Fields 105 (1996), 143–158.

9 O. Kallenberg. Foundations of modern probability (New York: Springer, 2002).
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Thesis, University of Paris Sud, 1975.
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