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0. Introduction

A fc-tuple of members of a group is free if it freely generates a free group. In an earlier
paper [1] the authors have shown:

Theorem 0. Let F be a locally compact field with a nontrivial absolute value. Then the
set of free k-tuples of PGJJji, F) has nonvoid interior in PGL(n, F)k, where the latter has
the topology induced from that of F.

In the present work we elaborate on the proof of the theorem above, in order to
describe an explicit construction for open sets of free k-tuples. For this purpose, it
is more convenient to work in GL(n,F) than PGL(n,F). The first step produces an
open subset of Fk"2+kn and an open map <j>k of it into GL(n,F)k whose image consists
of free /c-tuples; this, together with elementary facts about the quotient map
GL(n,F)->PGL(n,F) yields Theorem 0. The second step consists of intersecting that set
with a suitable affine copy of f*2 such that <f>k immerses that intersection into GL{n, F)k.
This provides open subsets of free /c-tuples of GL{n,F) described by exactly kn2

parameters. It is not very hard to follow the computations in the proof on small
examples over familiar fields; two such examples are included ir» the paper.

We introduce some notation. Throughout, F is a.locally compact field with a
nontrivial absolute value xi-»|x|. A product space F" will be equipped with the norm
|(x1,...,xm)| = max{|x1|,...,|xm|}. As F is fixed, we use the simple notation Mn = Mn(F),
GLa = GLn(F) and denote by Dn the set of diagonal matrices in MB, and Nn the subset of
Dn whose members have diagonal entries which are distinct and nonzero. We identify
Mn = F"2 and Dn = F" (via (x,,...,xB)i->diag(xi,...,xn)). Hence GLnxNn is an open and
dense subset of F"2+n. Now we state our main results. Let fc be a positive integer and
define the map

(f>k.GLkxDk-+Mk

by

<t>k((A
ll\

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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122 A. MANDEL AND J. Z. GONgALVES

Theorem 1. The restriction of <pk to GLk x Nk is an open map.

An m-tuple (m ̂  n) of members of F" is said to be in general position provided each n
of its members comprises a basis of F".

Theorem 2. Let W=-( Wa\..., W(k)) e GLk
n. Suppose that the kn-tuple of columns of W

in general position. Then there exist a neighborhood s/ofW in GLk and a subset 9) of Dk

with nonemplty interior such that <pk (stf x Q>) consists only of free k-tuples.

Note that as Nk
n is dense in Dk, the combination of these two results yields Theorem

0. As in [1], the discovery of Theorem 2 as well as many ideas in its proof are inspired
by Tits [5].

One can remove the degeneracy of c/>k, by restricting this map to a suitable subspace.
For convenience of explicit constructions, let PeGLk be a' fe-tuple of permutation
matrices and denote by M£ the affine subspace of M* which consists of k-tuples
(Aa\...,Aw) such that for i = 1,...,k, A(i) has a 1 in each entry where P(0 has a 1.

Theorem 3. Let W, s£', 3> be as in Theorem 2. Then there exist a k-tuple P of
permutation matrices and an open set 38 of GLk such that the restrictions of <f>k to
(@ n Mp

n) x Si is an open immersion and <j>k((@ n MJ) x 3>) = <pk(ji/ x Of).

It is clear that the quotient map GLn->PGLa maps free fe-tuples to free k-tuples. As
this map is open, the theorems above yield open sets of free fe-tuples in PGLn. Actually,
the open sets constructed in the proof of Theorem 2 are unions of fibres of this quotient
map.

The authors have conjectured [1] that free k-tuples form (alternatively, contain) a
dense open set in PGLk. It was pointed to us by D. Sullivan that the conjectures fail for
PGU2, C); this may be extracted from [4] where the interior of the set of free fc-tuples of
PSU2, C) is characterized.

1. The map 4>k

Proof of Theorem 1. It is enough to show that (j) = (j)l is an open map, as <j>k = (<f>,..., </>).
In order to prove that, we compute the differential and show that it is surjective at
each point of GLn x Nn. The desired result is a standard consequence of the "inverse
mapping theorem" when F=U or C; for non-archimedean F, see the remark following
the proof.

Let us fix a point (A,D)eGLnx Nn and write d(j> for the differential of 0 at (A,D).
Using well known differentiation rules, we obtain:

d<p(H,K) = HDA-i -ADA-lHA~l + AKA'1. (1)

To show that d<f> is surjective, we consider instead the linear map T.MnxDn-*Mn

defined by T(H,K) = A-1d<p(AH,K). Thus

T(H,K) = HD-DH + K. (2)
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Let E^ be the matrix which has a 1 in position ij and 0 elsewhere. It is enough to
show that each £fj is in the image of T. Suppose that D = diag(x1,...,xn), with the x,'s
distinct. Direct computations using (2) yield:

T((xJ-xi)-
lEiJ,0) = Eij>

if i±j and

T(0, £,) = £,,. •

Remark. A differential calculus for non-archimedean fields has been developed by
Schikhof [3] with results that validate the proof above in that case. However, there
seems to be a mistake in the proof of Theorem 2.3 of [3]. This can be bypassed by
noting that proofs of the inverse mapping theorem using the notion of "strong
derivative", as in Nijenhuis [2] (we are grateful to Prof. E. L. Lima for pointing out this
reference to us) remain valid in the non-archimedean setting. That extends the theorem
at least to rational functions Fm-*F", which is enough for our purposes.

Now we remove the degeneracy of 4>. This is done by first characterizing its fibres.
That, together with Theorem 1 enables one to recognize the triple (GLn x Nn, <j>, Im (j>) as
a principal G-bundle, where G is the group of monomial matrices in GLn (matrices with
exactly one nonzero on each row and column). Then we proceed to the construction of
local cross sections.

Lemma 1.1. Let {A,D) and (A,D) be elements ofGLnxNn. Then (j>(A,D) = <l>(A,D) if
and only if there exists a monomial matrix M such that A = AM and D = M~l DM.
Further, there exists a neighborhood of (A, D) whose intersection with any fibre of $ has
fixed D-component.

Proof. Clearly 4>(AM,M~l DM) = (f>(A,D) if M is a monomial matrix. For the
converse, suppose that <p(A, D) = <f>{A, D). It follows that the diagonal entries of D and D
are the eigenvalues of 4>(A, D). Since D e Nn, there is a uniquely determined permutation
matrix P such that P~lDP = D. One concludes that <j>(AP~i,D) = ct>(A,D). Hence, for
i—\,...,n, the ith column of A, and that of AP~l are eigenvectors of <j)(A,D)
corresponding to the same eigenvalue. As each eigenspace of <p(A, D) is 1-dimensional,
each column of AP~l is a (nonzero) scalar multiple of the corresponding column of A,
whence AP'1 =AK for some diagonal matrix K. The result follows with M = KP.

As for the last assertion, we note first that the action of monomial matrices on Nn,
given by conjugation, factors through the induced action of the symmetric group, hence
has finite, orbits. Thus, given (A,D) the assertion is validated by a product neighborhood
BxC, where C is a ball in Nn centred in D, of radius less than half the distance of D to
the finite set {PDP~1\P a non-identity permutation matrix}. •

Theorem 1.2. Let GL'n be the subset of matrices in GLn whose main diagonal consists
of ones only. Then the restriction of 4> to GL'n x Nn is an open immersion onto
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Proof. Let (A, D) e GL'n x Nn. Choose a neighborhood of (A, D) in GLn x Nn satisfying
the conclusions of Lemma 1.1, and let B be its intersection with GL],xNn. Suppose that
(A',D') and (A",D")eB have the same image under <f>. By choice of B, £>' = £>", hence, by
the Lemma, A"-A'K, for some diagonal matrix. K. Since A' and A"eGL'n, A' = A",
whence <f>\B is 1-1. It will now follow that (f>\GL'nxNn is an immersion from the fact
that it is open, proved as follows:

Let GL'n be the open subset of GLn comprised of matrices with nonzero diagonal
entries, and let £,:GL'n-^GLl

n be division of each row by the corresponding diagonal
element. With v.GL'n^>GL'n denoting the inclusion, we have the following commutative
diagram of maps:

GLL x N. »GL.

GL'nxNn
 lXl >GL'nxNn

Since <p is open and £, is continuous, it follows that cf> °i x 1 = <j>\GL'n x Nn is open.
To see that 4>(GL'n x Nn) = (j>(GLr, xNn), choose (A,D)eGLnx Nn; choose a nonzero

term in the determinant expansion of A and let M be- the monomial matrix
corresponding to that term. Then, (AM'1, MDM'1) e GJJn x Nn and (f>(AM~ \ MDM~1) =

An obvious, but convenient consequence of this is stated here with the notation of
Theorem 3.

Corollary 1.3. Let P=(P{1),...,P(k)) be a k-tuple of permutation matrices. Then the
restriction of <f>k to (GL%)k x Nk

n is an open immersion onto <$>k(GLk
n x Nk).

2. Construction of free Ac-tuples

The proof of Theorem 2 is a modification of the proof of Proposition 2.12 of Tits [5].
As in [1], the tool for proving a fe-tuple to be free is the following criterion, due to Tits,
and which has as ancestor Klein's Table-tennis Lemma.

Lemma 2.1. Let G be a group acting on a set P and let g=(gi, ••,£*) be a k-tuple
of members of G. Suppose that there exists a k-tuple {Pt,...,Pk) of subsets of P and
peP—(P1vvPk) such that, for all distinct i,j,l^i,j^k, and for all neZ*,

cpt. Then, g is free.

This is the plan of the proof of Theorem 2. Beginning with the given fc-tuple W, we
choose a point peF" that will play the role suggested in Lemma 2.1. Next we choose
suitable small disks in F", centred at the first and last column of each W(i) (for
simplicity, all with the same radius); for each i, the union of all 1-dimensional subspaces
through the two corresponding disks will yield the set P , of Lemma 2.1. Then the set A
is. chosen as a convenient disk about W. Finally the set 2) is chosen subject to two
requirements: for any (A,D)es/ x Q>, the fc-tuple g = <pk(A,D) satisfies:
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(a) the first (last) column of each A{l) is an eigenvector corresponding to the largest
(smallest) eigenvalue of gh and

(b) the relative sizes of the entries of members of S> satisfy computed cdnstraints that
guarantee that g,(PjU{p}) and gf1 {Ps;u {p}) are contained in Pu i^j. A simple
observation will then show that the conditions of Lemma 2.1 are fulfilled for each

x £)). Note that the P,'s and p are the same for all g's.

We need two simple preliminary results. Denote F" by V. Recall that when m ^ n a n
m-tuple of members of V is in general position if every n of its members are linearly
independent.

Lemma 2.2. The set Gm of m-tuples (m ̂  n) of V in general position is open in Vm.

Proof. Indeed, (Vlt...,V^ is in general position if .and only if for each
l ^ i x < ••• <in^m, det(Vii,...,V,i)£0. That is, Gm is the complement in Vm = Fnm of a
finite number of hypersurfaces. •

If A is a matrix (vector), At denote its ith column (component).

Lemma 2.3. Suppose that AeM and xeV are such that (Al,...,An,x)eGn+1. Then,
A is nonsingular and each component of A~lx is nonzero.

Proof. That A is nonsingular follows immediately from the definition of general
position. Also, as x = 'LiAi(A~lx)i, general position of {A\,...,An,x) implies that
(A-'x^O. •

We have arrived at the objective of this section. Denote, whenever a set SQ
(some r) and a is a positive real, by

®{S, a) = {x e Fr \ d(s, x) g a for some s e S]

the closed a-neighborhood of S.

Proof of Theorem 2. Regarding W as a list of column vectors, by hypothesis We Gnk.
Choose a point peV not lying on any of the hyperplanes spanned by columns of W;
thus w = (W,p)eGnk+1. Choose now positive reals y,e,5 such that:

(a) J ( w j ) c C r t + 1 (this is possible, by Lemma 2.2),

(b) 0${0&(w,§),e)^@{w,y) (clearly, S + e^y suffices but in working on non-
archimedean examples, y = e = S will also do).

Define now, for i=l , . . . , fc , Bs=S(Wl?,y), Ct=0S(Wf,y) and s/ii>=£(Wii>,8). Set
now:

(c) rf = @(W,S)=rfll) x •• x

(d) Pi = {xe V|XxeB,-u C, for some XeF}.
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Finally, we define <3 = 3ln) x ••• x 3)(k), where

(e) ®(l) = {diag(2 1 , . . . , i n ) | /xr 1 |^ |^ |^ |^- - -^K-i |^^K|>0}, where >iu...,nk are
positive reals yet to be determined. To begin with, we just require that / * , ^ 1 . The
other restrictions on /i, will be determined so' that the following is true.

(f) If g=(gl,...,gk)e4>k{s/x@), then for l^ij^k, i±j, and xePjU {p}, there exist
a,cc'eF* such that £,(ax)e£, and gr1(a.'x)eCi.

Let us finish the proof of the Theorem under the assumption that (f) holds. We must
show that each g e <j>k{j& x 3i) is free. Now, from (f) and the definition of the Ph it
follows clearly that g*l(PjV {p})^Pt, whenever i^j. Also, since fit^l, if De@li\ so
does Dr for every positive r hence (gr

h...,g
r
k)e<pk(stf x@>) for each positive r. Applying

the previous observation to (g\,..., gk), r > 0, shows that the conditions of Lemma 2.2
are fulfilled.

Incidentally, note that if some ^,= 1, we could obtain g\ = I, which cannot be a
member of a free fc-tuple. This shows that if the numbers /i,-^l are such that (f) holds,
indeed fit> 1, i=l,...,k.

Now we compute the /z,'s. Let us denote, for r = 1 or n,

1 , . . . , l n ) | X r = 0 , | ^ l for i = l,...,.«}<=!)„.

N o w , for 1 S U j ^ k, i J=j and r = 1 or n, let

This is finite: when A, x are the domain of this expression, the columns of A occur
together with x in a member of Gnk+1 (see (a)), hence by Lemma 2.3 the denominator of
II^D/t"1*)/^"1*),.!! never vanishes, and this is a continuous real valued function with
compact domain.

Set now

(g) IH

(As remarked before, it will follow that /xf>l, hence the presence of 1 in the
expression defining fit is unnecessary. But we knbw no other "a priori" way of
guaranteeing that ji,-^l).

Now we prove (f). Let gt = ADA~l, with-/4e<s/(0, De®{i\ and let xePjKj{p). Let
a=(D1 1,(/l~1x)1)-1. Then

where

and x = x / ( /4" 1 x ) 1 . N o t e tha t /zf1 > | A 2 j ^ | A 3 | ^ ••• ^ l A j . Further , (A~1x)1 = l whence
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the identity At = Adiag(l,O,...,O)/4"1jc. We have:

where D = X J 1 diag(0, l2»• •> - U e &\ > yielding finally

Therefore as Aes/W, A^^W^S) whence

This completes the proof of the conclusion of (f) about g;; for g r 1 , use the same
argument with a ^ D J f / f ' x ) , and replace Au Wf by Xn, Wf.

3. Examples

We shall follow here the proof of Theorem 2 in order to construct examples of open
sets of free pairs, first over the reals, second over Qp, the p-adic completion of the field
of rational numbers. The simplification suggested by Corollary 1.3 is to be followed so
that we obtain an 8-parameter family of free pairs, where each parameter is allowed to
vary within a certain interval. A computation of appropriately sized intervals, which
ensure that the resulting pairs are free is the gist of the calculation.

3.1. Let F = U, n = k = 2

'\ Oi 1/2 1
w—

' 0 lj 1 1/2/

p = (l, 1), y = l/6. One readily verifies that B(W,1/6)^G5. In the notation of Corollary
1.3, with f suitably adapted to P,

p~\o i j i 0 /

where |xj | , |x2 |gl/5, — ̂ ^x3,x4^-^. Recall that £,(Bl),£,{Cl\^(B2),£,{C2) are the pro-
jections of k(B(W, 1/6)) onto the first through fourth column, respectively.

Choosing 5 = 1/11,6=5/66 (so that £ + 5 = 1/6), we have, with sf~B(W,8),

-1/8 g£2,£4 = 3/20
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IfxEB2,

hence

also

8 < d e t A ^ " ' -
' "- l

2

Hence

sup
ADA~lx

(A slightly more complicated exact calculation gives sup=y§).
Similarly, one finds that

sup
ADA'lx

is bounded above by 90/92 when xeC2, and by 11/9 when x=p.
It follows that /?! 2,i ^378/65, and the same bound holds for /?li2,2 (n o coincidence—

this reflects symmetries of the chosen set s£).
Thus one gets

Similar calculations yield At2 = 1i7s6<86 (additional effort yields the exact values
, = 4752/65, n2=407/5).
In conclusion, Theorem 2 guarantees that,

is a free pair whenever
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and by Corollary 1.3 the image of the interior of this domain is Van open set.

3.2. Let F=QP

We indicate one set of parameters; the calculations, following the first example as
paradigm, are easily completed due to the ultrametric property of ||P, yielding exact
values for nl and fi

Let

with y = P~2. We take £ = d = y. Then

One gets /x1=/i2 = ^>3- Thus one gets an open set of free pairs of PGL{2,QP) as
<j>2(A

w,A™,DwD{2)) (sort of) where

-C. A)-(i A
4. What about Zariski Topology

It makes sense to ask whether an analogue of Theorem 0 exists in the sense of Zariski
topology; namely, one would look for Zariski-open sets of free k-tuples. For fields with
a non-trivial absolute value, those sets would be open and dense, in the topology
hitherto considered. Thus, we would be looking for something even stronger than
conjecture 2 of [1], which has been shown false for C by Sullivan, as we remarked at
the introduction. Indeed, the intended analogue of Theorem 0 is false in general, as we
show now by elementary methods.
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Here F will be a field with infinitely many roots of unity. The only topology considered
herewith in the several spaces involved is the Zariski topology ascribed to them by their
obvious identification as a constructible subset of some Fm.

Theorem 4.1. The set Tn = {AeGLn\A" = Ifor some seN*} is dense in GLn.

Corollary 4.2. Tk
n is dense in GLk

n.

Corollary 4.3. The set of free k-tuples has empty interior in GLk
n.

Since the product of dense sets is dense in the Zariski product topology, Theorem 4.1
implies the first corollary, and this entails the second one immediately. Notice that the
existence of infinitely many roots of unity is also a necessary condition for Theorem 4.1
to hold: if a field has only r roots of 1, every member of Tn is a root of the polynomial
(in n2 variables) (det,4)r— 1. However, one feels that Corollary 4.3 is true whenever F is
infinite.

The proof of 4.1 requires the two lemmas below:

Lemma 4.4. The set Tn(F) is dense in the set of semisimple matrices of GL{n, K), where
K is the algebraic closure of F.

Proof. Consider the morphism of varieties

</>: GL(n, K) x Dn{K) - Gl+n, K),

given by the now usual formula <f>(A,D) = ADA~1. Its image is the set of semisimple
matrices. The set Tn(F) contains the image of GUn, F) x Dn(R), where R is the set of
roots of 1 in F, Dn(R) is the set of diagonal matrices all whose diagonal entries are in R.
Since R is infinite, it is dense in K, hence Dn(R) is dense in Dn(K); essentially by the
same token GL{n, F) is dense in GUji, K). It follows that GL(n, K) x Dn(R) is dense in the
domain of <p; by continuity, its image is dense in the image of 0. • •

Lemma 43. For an algebraically closed field K, the set of matrices with only simple
eigenvalues is open in Mn(K).

Proof. Let X=(xtJ) be a matrix of indeterminates over R and let d(xy)eK[xy] be
the discriminant of the characteristic polynomial Px of X. A polynomial has multiple
roots if and only if its discriminant is zero. Hence a matrix A has multiple eigenvalues if
and only if it is a zero of rf(xy). •

Proof of Theorem 4.1. Combining the two lemmas, Tn(F) is dense in a subset of
GUji, K) which contains an open set. As open sets are dense, Tn(F) is dense in GL(n, K);
a fortiori, Tn(F) is dense in GL(n,F), since this has the topology induced from
GL(n,K). •
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