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MORE CRANKS AND f-CORES

F.G. GARVAN

Dedicated to George Szekeres on the occasion of his 90th Bi r thday

In 1990, new statistics on partitions (called cranks) were found which combinatorially
prove Ramanujan's congruences for the partition function modulo 5, 7, 11 and 25. The
methods are extended to find cranks for Ramanujan's partition congruence modulo
49. A more explicit form of the crank is given for the modulo 25 congruence.

1. INTRODUCTION

Let p(n) be the number of partitions of n [1]. If a ^ 1, and 6a, Xa, \ia are the
reciprocals of 24 modulo 5Q, 7Q, l l t t respectively, then

(1.1) p(oan + 6a) = 0 (mod 5a),

(1.2) p(72Q"1n + A2Q_1) = 0 (mod7a),

(1.3) p(72an + A2Q) = 0 (mod 7a+1),

(1.4) p(llan + fj,a) = 0 (mod 11Q).

These are Ramanujan's partition congruences. Watson [9] proved (1.1), (1.2), (1.3) and
Atkin [3] proved (1.4). Dyson [5] was the first to consider explaining these congruences
combinatorially. Dyson defined an integral statistic on partitions, called the rank, whose
value mod 5 he conjectured split the partitions of 5n + 4 into 5 equal classes, thus giving
a combinatorial refinement for the a = 1 case of (1.1). He further conjectured that the
analogous result for the rank mod 7 gave the a — 1 case of (1.2), and that there was a
statistic, called the crank, which would similarly give the a = 1 case of (1.4). Atkin and
Swinnerton-Dyer [4] proved Dyson's rank conjecture for 5 and 7. Andrews and Garvan [2]
proved Dyson's crank conjecture by finding a crank which proves not only Ramanujan's
conjecture for 11 but also for 5 and 7. Later, Garvan, Kim and Stanton [6] found new
cranks which gave new interpretations of Ramanujan's congruences mod 5, 7, 11, and 25.
Their approach was combinatorial and in terms of the t-core of a partition. They gave
explicit bijections between the equinumerous classes. In the present paper we extend the
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methods of [6] and give a crank which is a combinatorial refinement of the a = 1 case of

(1.3), namely

(1.5) p(49n + 47) = 0 (mod 49).

In Section 2 we re-examine two bijections from [6]. A crank for the partitions of
25n+ 24 mod 25 was given in [6]. A more explicit form of this crank is given in Theorem
3.4. A new and explicit crank for the 7-cores of 49n + 47 is given in Theorem 3.5. This
leads to a crank for the partitions of 49n + 47 (Corollary 3.1).

2. TWO BIJECTIONS FOR i-CORES

We need to examine in detail the two bijections relating partitions and i-cores which
were given in [6], Following [6] we let P be the set of all partitions. For any A € P, let
|A| denote the number that A partitions. Fix a positive integer t. Let P(.core be the set of
partitions which are i-cores. Recall that a partition is a i-core if it has no hook numbers
that are multiples of i or equivalently no rim hooks that are multiples of t. See [7] for
background on t-cores, hook numbers and rim hooks. We let at{n) denote the number of
partitions of n which are i-cores.
BIJECTION 1. ([7, 2.7.17], [6, p.2].) There is a bijection <j>x : P -> Pt.core xP x • • • x P,

such that

i=0

C O R O L L A R Y 2 . 1 .

n = l

Given a partition A we label a cell in the z-th row and j - th column by j — i (mod t).
The resulting diagram is called a t-residue diagram [7, p.84]. We form the extended
i-residue diagram by adding an infinite column 0 labelled in the same way. A region r of
the extended diagram is the set of cells (i, j) with t(r — 1) ^ j — i < tr. A cell is exposed
if it is at the end of a row. The partition A is a t-core if and only if for each exposed
cell labeled i in region r there is an exposed cell labeled i in each region < r. Now we
construct t bi-infinite words Wo, Wii • • • , Wt-i of two letters N (not exposed) and E
(exposed):

m I TV if £ is not exposed in region j ,
The j - th element of W{ = < J

\E if i is exposed in region j .

We now give the bijection. For each i we do the following steps:
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Step 1. Find the right-most E.

Step 2. Find the right-most TV to the left of this E. If no such TV exists then END.

Step 3. Remove the rim hook whose head is at E and whose tail is one cell to the
right of the TV. Place a part of size (rim hook removed)/^ in A;.

Step 4. Go to Step 1.

The operation in Step 3 above changes a substring of Wt of the form NEE... EEN to
EEE... ENN, that is, the TV is pushed right.The other words Wj are left unchanged
by removing this rim hook, and we can process the i's in any order. Steps 1-4 create a
partition A* starting from the smallest part to the largest part and the process is easily
reversible. At the end when all the Wi have been processed we are left with the required
t-core A.

B I J E C T I O N 2. [6, p.3] There is a bijection cj>2 : P(-COre —• {n — ("o,"i , • • • >"t-i) •" i» €
Z, na-\ h ftt-i}, where

| A | = i | | n | | 2 / 2 + £ -n , 6 = ( 0 , 1 , . . . , * - 1 ) .

For a partition A, we let rk{\) denote the number of cells in the t-residue diagram labeled
k (mod t), and call

r = {ro,ri,...,rt^i)

the r-vector of A. Bijection 2 is given by

(2.1) <t>2(\) =n=(r0- ru r1-r2,-.., rt-i - r 0 ) .

Let [x] denote the greatest integer not exceeding x. We shall need the following

LEMMA 2 . 1 . Let A : Aj ̂  \2 ^ • • • ̂  Am be a partition and suppose

(pi(X) = (A, Ao, Ai , . . . ,A t _ i ) .

Then

t-l ,t-\

(2-2) £|Ai|=ro-f][>j
2-riri

t=0 ^ i=0

and

(2.3) g i f t l s^Aj- j j f^ iJ -g^Qw + lJ+fll^i]) (mod*),

where di is the number of elements of the sequence

Ai - 1, A2 - 2 , . . . , Am - m,

which are congruent to i (mod t).
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P R O O F : For t-cores, we have

t=0

See [6, p.6]. Now suppose r is the r-vector of A and ? is the r-vector of its t-core A. The
partition A is obtained from A by the removal of rim hooks whose lengths are multiples
of t. Each rim hook of length t contains cells with distinct t-residues. It follows that

r'i + s = n

where
t-i

* = £&!•
3=0

Since r' is the r-vector of a t-core we have

T 0 —

t - 1

' 0 s — / A\r> s) \"t sA"«+i s J j
i=0
t-i

•*•*• if .if. \

i=0

and (2.2) follows.

We add t dummy zeros to the parts of A:

Ai > A2 ^ • • • > Am > 0 ^ • • • > 0,

and form the sequence

A: A i - l > A 2 - 2 > - - - > A m - m > -m - 1 > • • • > - m - t.

Let
]M : M»,I > (Ma > > A*»,Jti

be the terms of the sequence A that are congruent to i (mod t). Here ki is the number
of terms so that dj = ki — 1. Each /ii|fc corresponds to an exposed cell labeled i in region
[fMjc/t] + 1. In Bijection 1, the numbers

correspond to a string of n^ consecutive ./V's in the word Wj. Since these JV's are shifted
as far as possible to the right we find that the sum of parts of the (i + l)th component

2nitit2
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Since /i,-^ = i (mod t) we find that

The desired result (2.3) follows from the fact that d+ — k - 1 and that

\m-i-V

3. CRANKS FOR t-coRES AND PARTITIONS

We need the crank results in [6]. The following theorem follows from [6, Theorem 1].

THEOREM 3 . 1 . [6] If (t, 5) = (5,4), (7,5) or (11,6), then

n>° Q6Z', 31=1

where
t-i

Q(a) = ||a||2-^aiQi+i.
i=0

The form Q(d) remains invariant under a cyclic permutation of the â . This induces
a t-cycle on t-cores of tn + S, which in turn induces a i-cycle on partitions of tn + 5 via

t-i
Bijection 1. For the form Q(a) the associated crank statistic is ^2 "*•• This leads to

t=0

crank statistics for i-cores of tn + 5, and for partitions of tn + 6.

3.1. CRANKS FOR PARTITIONS OF 5n + 4 AND 25n + 24

THEOREM 3 . 2 . [6, p.7] Let f= ( r o , r i , . . . , r 6 ) be the r-vector of X, a 5-core of
5n + 4. Then

(3.1) ci(A) :-2rx - r2 + r3 - 2r4 (mod 5) G Z5

is a crank for 5-cores of 5n + 4.

We make explicit the 5-cycle a that acts on 5-cores of 5n + 4. We let P(.Core(^)
denote the set of t-cores of TO. For 0 < j < 4 we let •Pjicore('n) denote the set of t-cores A
of m, with crank Ci(A) = j (mod 5). For a t-core A we call n = <fo(A) its n-vector. We
define the 5-cycle a in terms of n-vectors. The map

O : P5-core(5n + 4) > P5-core(5n + 4)
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is defined by

2 no rii 4 n 2 2 n 3 3 3n 0 6nx 4n 2 2n 3 2

n0 3n i 3n 2 n3 1 6n0 2n i 3n2 4n 3 4

For each 0 ^ j ^ 4, the map

a : ^core(5n + 4) —> /££,(5n + 4)

is a bijection.

The key to finding a crank for partitions of 25n + 24 in [6] was a bijective proof of
the identity

(3.2) o5(5n + 4) = 5a5(n).

The map
6 • P5-core(n)-^P5°core(5n + 4)

defined by

n t-¥ (ni + 2n2 + 2n4 + 1, -n\ - n2 + n3 + n4 + 1,2^ + n2 + 2n3,

- 2n2 - 2n3 - n4 - 1, -2ni - n3 - 2n4 — 1)

is a bijection. See [6, p.8]. This together with Theorem 3.2 yields a combinatorial proof
of (3.2).

We now describe the crank for 5-cores of 25n + 24 found in [6]. For X e P5.COTe(2bn +
24) choose the unique A' e P£core(25n + 24) which is in the same orbit as A under the
5-cycle a. Define

(3.3) ca(A):=c1(fl

Letn = d-l{\'). By (2.1)

c2(A') = ci{n) = 2n\ + n2 + 2n3.

Observe that this is the third component in the n-vector of 6(n) — A'. It follows that

(3.4) c 2 ( A ' ) = r 2 - r 3 ,

where f is the r-vector of A'. Unfortunately, it is not true in general that c2(A') = c2(A)
(mod 5). Nonetheless we can find a crank for 5-cores of 25n + 24 independent of the two
maps a and 9. We have the following
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THEOREM 3 . 3 . Letf= ( r O l r 1 , . . . , r4 ) be the r-vector of A, a 5-core of 25n+ 24.
Then

(3.5) c(A) := (c^A), c2(A)) = (2r, - r2 + r3 - 2r4, r2 - r3) (mod 5) £ Z5 x Z5

is a crank for 5-cores of 25n + 24.

P R O O F : For each (z, j ) in Z5 x Z5. we let Pgore(25n + 24) be the set of 5-cores A of
25n + 24 such that c(A) = (i, j) (mod 5). The map

(25n + 24) —> P ^ ( 2 5 n + 24)

is a bijection. We have calculated the effect a has on our crank statistics c\, c2. A
calculation shows that the map

a :

is a bijection. We omit the details. We note that the indices are reduced mod 5. Using
the maps \& and a we find that

|p£'core(25n + 24)| = |P5
0'°ore(25n + 24) | = ^ a5(25n + 24),

forO ^ i,j ^ 4. Hence c = (ci,c2) (mod 5) is a crank for 5-cores of 25n+ 24 (mod 25). D

A crank for partitions of 25n+24 is given in [6, Theorem 6]. This crank is algorithmic
in nature. It depends on Bijection 1, and the map 9. In view of Lemma 2.1 and Theorem
3.3, we may define a crank independent of these maps. For a partition A : X\ ^ A2 Jj
• • • ^ Am, with r-vector f = ( r 0 , . . . , r (_ i ) , the definition of Ci(A) and c2(A) is analogous
to that given for t-cores in (3.1), (3.4) respectively. We need two more statistics. We
define

,t-\

(3.6) (

and

(3.7) c3(A):

where rfi(A) is the number of elements of the sequence

Ai — 1, A2 — 2 , . . . , Am — m,

which are congruent to i (mod t). Now let A be any partition of 25n + 24, and suppose

= (A, Ao, A i , . . . , A4).

https://doi.org/10.1017/S0004972700019481 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019481


386 F.G. Garvan [8]

Then by Lemma 2.1,

t=0

and
4

^ i | A j | = c3(A) (mod 5).
t=0

If s(A) = 0 (mod 5), then A is a 5-core with |A| = 24 (mod 25) and

c(A) := (Cl(A), c2(A)) = (Cl(A), c2(A)) (mod 5),

since the sum of the coefficients in the definitions of ci, c2 is zero. By rewriting [6,
Theorem 6] in terms of our new statistics we obtain a bijection independent crank.

THEOREM 3 . 4 . Letr — (ro,ri,... ,r4) be ther-vectorofapartition A of25n+24.

We define a crani c(A) e Z 5 x Z 5 as follows.

If s(A) = 0 (mod 5) we define

(3.8) c(A) := (d(A), c2(A)) = (2r: - r2 + r3 - 2r4, r2 - r 3 ) .

Ifs(X) =£ 0 (mod 5) we define

(3.9) c(A):=(ci(A),ca(A)).

Then c(A) is a c ran i for the partitions of 25n + 24 mod 25.

The proof utilises Theorem 3.3 and follows from [6, Theorem 6].

3.2. C R A N K S FOR PARTITIONS O F 7n + 5 AND 49n + 47 For 7-cores of In + 5 there
is no analog of (3.2) and so there is no analog of the map 6. Nonetheless we are able to
find a crank c(A) £ Z 7 x Z 7 for the partitions of 49n + 47.

THEOREM 3 . 5 . [6, p.7] Let f = (r0, n , . . . , r6) be the r-vector of A, a 7-core of

7n + 5. Then

(3.10) Ci(A) : = 5 r ! - r2 - r3 + r4 + r5 - 5r6 (mod 7) € Z7

is a crank for 7-cores of In + 5.

We make explicit the 7-cycle a that acts on 7-cores of In + 5. We define the 7-
6

cycle CT in terms of n-vectors. Since Y2ni = 0> w e omit the last component n^, and let
n = (n0, T»I, . . . , n5 )T .The map

a : P7-core(7n + 5) —> P7.core(7n + 5)

is defined by
a{n) = M n + f,
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where
f-8 - 2 - 3 - 4 - 5 -d\

1 2 3 4 - 2 6
3 - 1 2 5 1 - 3

- 2 - 4 1 - 1 4 2
0 0 - 7 0 0 0
2 - 3 - 1 - 6 - 4 - 2

_ 1
2

- 1
0

V-3/

We have the following

THEOREM 3 . 6 . Let f = (ro,ru... ,r6) be t i e r - vector of A, a 7-core of 49n + 47.
Then

(3.11) c(A):=(Cl(A),c2(A))

= (5ri - r2 - r3 + r4 + r5 - 5r6, r3 + 4r4 - 4r5 - r6) (mod 7) e Z7 x Z7

is a cranfc for 7-cores of 49n + 47.

PROOF: For each (i, j) in Z7 x Z7, we let P7.^ore(49n + 47) be the set of 7-cores A of
49n + 47 such that c(A) = (i,j) (mod 7). We construct 7 bijections

9n + 47) —> P7
0^e

1(49n + 47), 0 6.

Each map ^ has the form

f-24
40

-15
0

- 3 6
17

- 3 7

0

- 2
- 2 0
- 1 7

0

- 5
- 1

-18
49

13
4
23
0

- 4
2

- 1 3
0

- 2 -22
\ -40 -38 -36 -41 -60 - 2 3 /

where M; is a 6 x 6 matrix, and fj is a constant vector, and which are given below.

- 4

26

0

- 2 6

4

31
26
0

-26

\ ~ 3 1 /

/ 32 1 -30 - 5 6 10 \
- 9 -46 8 -15 4 2
-36 12 -17 -11 16 8

0 0 0 49 0 0

36 44 52 25 19 48
11 13 - 6 17 -37
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36
24
-23
0
23
-24

4

-9
48
0
-48
9

-12
-36
31
0
-31
36

-31
12
-36
0
36
-12

58
6
-18
0
-31
-6

8
-4
54
0
2
-31

39
-30
-15
0
-34
30

-34
10
-30
0
30
39

F

24
16
-48
0
-1
33

-44
22
46
0
-11
-1

6
18
9
0
-58
31

-58
-6
18
0
31
6

.G. Gar van

18
12
-36
49
-13
-12

-19
-15
31
49
-17
-6

-6
-18
-9
49
-40
18

-40
6
-18
49
18
-6

12
57
-24
0
-25
-8

-8
-10
37
0
-2
31

-18
-5
-27
0
-22
54

-22
18
-5
0
54
-18

27 \

18
-54
0
5

-is)

-25\

-40
50
0
6
5 J
-2\
-6
-3
0
-46
6 )

51
-6
0
6
- 2 I

1
' T2~49

1
1 T3 " 49

1
' n ~ 49

1
1 Ts~ 49

f-5\
13
10
0
-10

(15\
3
-16
0
16

^ 3 /

/ 11 \

33
-8
0 .

8

V-3V
/36\
24
26
0
-26

[10]

Let

(3.12)

( 36 44 52 25 19 48 \

-32 -22 -26 -37 -62 -31

-9 -46 8 -15 4 2

0 0 0 49 0 0

9 11 13 -6 17 -37

32 1 -30 -5 6 10

w(n) := w(no, nu ..., n5) = - (n
2
0 + • • • + n\ + (no H + n5)

2)

1
49

/ 2 \

20
24
0
-24

2n2 f- 5n5 - 6(no + • • • 4- n5).

https://doi.org/10.1017/S0004972700019481 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019481


[11] More cranks and t-cores 389

In terms of the n-vector cY, c2 are given by

Ci (n) = 5ni + 4n2 + 3n3 + 4n4 + 5n5,

c2(n) = n3 + 5n4 + n5.

In order to show the $j are bijections, we have used computer algebra to show for each

h

(i) tyj preserves the form w,

(ii) det(Af,-) = ± 1 , and

(iii) n e Z6, (c1(n),c2(n)) - (0, j), w(n) = 47 (mod 49) implies $>(n) e Z6 and
(c1(»i),c2(n))=(O)i + l) .

We have calculated the effect the 7-cycle a has on our crank statistics ci, c2. A calculation
shows that the map

" : ^7Jcore(49n + 47) —» P£l£+j(Mn + 47)

is a bijection. We omit the details. We note that the indices are reduced mod 7. Using
the seven maps ^j and the 7-cycle a we find that

|P7
ij

core(49n + 47)| = |P7°e0
ore(49n + 47) | = ^ a7(49n + 47),

for 0 ^ i,j ^ 6. Hence c = (ci, c2) (mod 7) is a crank for 7-cores of 49n+47 (mod 49). D

COROLLARY 3 . 1 . Let f = (TQ,T\, ... ,re) be the r-vector of a partition X of

49n + 47. We define a crank c(A) € Z7 x Z7 as follows.

Ifs(X) = 0 (mod 7) we deSne

(3.13) c(A) := (c1(A),c2(A)) = (5n - r2 - r3 + r4 + r5 - 5r6,r3 + 4r4 - 4r5 - r6).

If s(A) ^ 0 (mod 7) we define

(3.14) c(A):=(c1(A),C3(A)))

where c3 is defined in (3.7).

Then c(X) is a crank for the partitions of 49n + 47 mod 49.

The proof is analogous to that of Theorem 3.4.

4. REMARKS

Our cranks for the partitions of 25n + 24 and 49n + 47 depend crucially on finding
the two crank functions Ci and c2. The first crank function cx arises naturally from the
i-cycle one gets from Theorem 3.1. For 5-cores the second crank function c2 arises from

https://doi.org/10.1017/S0004972700019481 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019481


390 F.G. Garvan [12]

the map 6. We describe another way the second crank function arises. Let w(n) be
denned as in (3.12). Then since w(n) = 5 (mod 7) and assuming Ci(n) = 0 (mod 7),
there are integers k, t such that

n0 = 7k + 5 — 2ni — 3n2 - 4n3 — 5n4 — 6n5,

n\ = 7£ - n5 — 5n2 - 2n3 — 5n4.

Now assume the second crank function takes the form

bn4 + cn5,

for some integers a, b, c. If we assume c2(n) = 0 (mod 7), then there is an integer rn
such that

ri3 = 7 m — an2 — bri4 — cn.5.

We want w(n) to be a linear form mod 49 in the remaining variables 712, 714, 715. A
calculation shows that this can only happen if

(a,6,c) = (0,5,1) (mod 7),

which nails down the second crank function c2. We have considered the analogous problem
for 11-cores of 121n + 116, and found there is no second crank function of a similar form
which makes the corresponding w{n) linear mod 121. So if there is a crank for 11-cores
of 121n + 116 it must be more complicated.

It would be interesting to find other occurrences of pairs of crank functions (ci, c2)
which give combinatorial congruences. Zoltan Reti [8] found a pair of crank functions
which explains the congruence

s(9n + 8 ) = 0 (mod 9),

where s(n) is the number of partitions of n in which an even part may have two colours.
It was Reti's result which led us to search for a function c2 for 7-cores of 49n + 47.
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