
SOME RESULTS FOR THE GENERALIZED 
LOTOTSKY TRANSFORM 

V. F. COWLING AND C. L. MIRACLE 

1. I n t r o d u c t i o n . Let A = (ank) and x = {sn} (n,k = 0,1,2, . . . ) be a 
matr ix and a sequence of complex numbers , respectively. W e write formally 

oo 

(1.1) in = 2~/ ankSki 
k=0 

and say tha t the sequence x is summable A to the sum t or t h a t the A mat r ix 
sums the sequence x to the value t if the series in (1.1) converges and 

l im/ n 
tt->co 

exists and equals t. W e say t h a t the matr ix A is regular provided it sums 
every convergent sequence to its limit. Well-known necessary and sufficient 
conditions in order t h a t a matr ix A be regular a re : 

oo 

(1.2) E K*| < M (» = 0, 1, .. .), 
j t=0 

(1.3) l i m o r e i : - 0 (* = 0, 1, . . . ) . 
ft->oo 

oo 

(1.4) lim X) ank = 1, 
n->co &=0 

where M is a cons tant independent of n. 
Let {dn} (n = 1, 2, 3, . . .) be a given sequence of complex numbers with 

dn 7e- — 1 . T o simplify the notat ion and computa t ions of this paper we will 
also assume t h a t dn 9e 0. Using the given sequence {dn), we define the elements 
Pnk of the [F, dn] matr ix by the relations 

(1.5) Poo = 1 

Pok = 0 k ?* 0 • 

n f i r = £ p«f (» > D-
^=i l - h Û^ £=o 

Notice t h a t Pnk are undefined for — oo < k < 0 and PnJc = 0 for n < k < co. 
If needed, one can define Pwfc = 0 for — oo < k < 0. Jakimovski (3) has shown 
t h a t the [F, dn] mat r ix so defined is regular provided the following three 
conditions hold: (1) dn is real, (2) dn > 0 for n > n0 where no is some integer, 
and (3) ^n=\°dn~

l diverges. H e has also shown t h a t if the above three con­
dit ions hold and in addit ion t h a t S w = i ° ° ^ - 2 converges, then the [F, dn] matr ix 
sums the sequence of part ial sums of the geometric series to the value (1 — z)~l 
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THE GENERALIZED LOTOTSKY TRANSFORM 419 

for Re (z) < 1, and uniformly in any bounded domain inside the half-plane 
Re (2) < 1. One of the results of this paper is that the above conclusion follows 
from the first three hypotheses without requiring the extra assumption that 
Ln=i°°^"2 converges. 

This paper falls naturally into four sections. First, we obtain several neces­
sary conditions bearing on a complex sequence {dn} in order that the corre­
sponding [F, dn] matrix be regular. Secondly, with these conditions in mind, 
we obtain one set of sufficient conditions bearing on a complex sequence {dn} 
in order that the corresponding [F, dn] matrix be regular. This matrix has the 
regular Euler matrix as studied by Agnew (1), the Lototsky matrix as studied 
by Lototsky (5) and Agnew (2), and the [F, dn] matrix as studied by 
Jakimovski (3) as special cases. Thirdly, we find (if lim \dn\ = 0° or 
lim dn exists) the domain in which this regular [F, dn] matrix sums the geo­
metric series to the value (1 — z)~l. The domain in which this matrix sums 
any power series then follows from a theorem of Okada (7). Finally, it was 
shown by Agnew (1) that the Euler transform provides a method of analytic 
continuation for cases in which the method is not regular. We study certain 
non-regular [F, dn] matrices from this point of view. 

2. Necessary conditions in order that the [F, dn] matrix be regular. 
Throughout this paper we will assume that the sequence {dn) (n = 1, 2, 3, . . .) 
is a given sequence of complex numbers subject perhaps to certain conditions. 
Using this sequence we then define the elements Pnk of the [F, dn] matrix by 
(1.5). Also we will always use the notation, \dn\ = pn and arg dn = 6n 

( -7T < 0» < 7r). 

THEOREM 2.1. Let dn = xn + iyn> A necessary condition in order that the 
[F, dn] matrix be regular is that there exists a monotone increasing sequence of 
natural numbers {nk} such that 

Z l + 2xnk . 
H I T 12 = + °° • 

jfc=i | i T " ank\ 

Proof. Assume that the [F, dn] matrix is regular. Upon setting 6 = 0 in 
(1.5), we get 

Since the numbers Pno must satisfy (1.3), it follows that 

Hm fl jfj = 0. 

However, 

ft -A_ = 0 
%\ l+dj 

if and only if 
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420 V. F. COWLING AND C. L. MIRACLE 

oo I J |2 

rr 1̂ 1 
A A II 4 - // I2 

But 

U |l+dy|: = 0 

if and only if there exists a monotone increasing sequence of natural numbers 
{tiic} such that 

Ê (- i+lrh- |%-2-IT 
fc=l \ I 1 + On» I / fc=l IA 

diverges to minus infinity. 

+ 2x„ 
+ 4,12 

COROLLARY 2.1. 4̂ necessary condition in order that the [F, dn] matrix be 
regular is that xn > — \ for infinitely many values of n. 

COROLLARY 2.2. A necessary condition in order that the [F, dn] matrix be 
regular is that YLn=\°Pn~l — + ° ° . 

Proof. Assume that YLn=\°Pn~l is convergent. Since pn > 0 this implies that 

lim Pn = + œ. 
W->oo 

Hence 

l ~t~ xn 

E 7^ 
" 1 
n=l I 1 

+ 4| 
is absolutely convergent. This in turn implies that if {nk} is any sequence 
of integers, then 

k=l | 1 + r̂ejfc I 

is also convergent. Since the [F, dn] matrix is regular, this is a contradiction 
to Theorem 2.1. 

Meir (6) has constructed an example of a real sequence {dn) which is regular 
and does not satisfy Jakimovski's (3) sufficient conditions for regularity. 
Hence these conditions are not necessary. Meir's sequence is an interesting 
example showing that Corollary 2.1 is the strongest theorem of this type one 
can obtain. 

THEOREM 2.2. Let a be given where 0 < a < T/2. If there is a positive integer 
N such that a < Bn for all n > N, then the [F, dn] matrix is not regular. 

Proof. Assume the [F, dn] matrix is regular. Define the terms \n of the 
sequence {Xw} by \n = pne

i0n
y where pn = 6n — a. Define the elements bnk of 

the [F, \n] matrix by the relation 
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(2.1) 

600 = 1 

bok = 0 k 9* 0 

3=1 -»- ~ r A j k=o 

Using the Cauchy integral formula, the numbers Pnk in (1.5) are given by 

P _ J _ f TT ft + ^ rf< 

^* ~ 2« Jc | i Vl + d'Jtk+1 ' 
where c is any closed curve containing the origin. Integrating we get 

1 - ^ 
(2.2) ±nk n 

][[ (1 + dj) Si+S*+-+Sn+Jc=n 
3=1 

dïd? . . . dï, 

where st = 0 or 1 and the sum is taken over all possible values of st such that 
Si + S2 + . . . + sn = n — k. Similarly, the numbers bnk as defined by (2.1) 
are given by 

brik = ~n 2^/ A l A 2 • • • A»n> 

n (i + A,) si+s2+-+s»+*=w 

3=1 

where the sum is the same type as in (2.2). Now since \n = dne~ia, it follows 
that 

1 
Vnk n 

n (i + x,) 
j=l 

E d\ldf ...ds
n"e Sn i(n—k)a 

>i+S2+...+ sn+k=n 

or that 

(2.3) Z d?d? . . . C 
Sl+S2+...+ Sn+k=Tl 

= IM fi |1 + U 
^=1 

Inserting absolute values in (2.2), summing over k from 1 to n, and making 
use of (2.3), we have 

(2.4) E î *i = n 
3=1 

1 + Xj 
l + d, S |6n*|. 

*=0 

Substituting 0 = 1 in (2.1) yields J2k=onbnk = 1. Hence L*=on |M > 
|Z^=o^&| = 1. Using this inequality, (2.4) becomes 

(2.5) z Î *I > n 3=1 

1 + X, 
1 + d, 

Since the [F, dn] matrix is by assumption regular, it satisfies (1.2). Hence 
(2.5) implies that 
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422 C. F. COWLING AND C. L. MIRACLE 

M Vi + dj 
is a bounded function of n. 

From the hypothesis of the theorem and the fact that — w < dn < 7r, there 
exist N such that a < dn < ir for all n > TV. This implies that 0n > (3n > 0 and 
cos 6n < cos ft, for n> N. It follows that |1 + Xw|2 > |1 + dn\

2 for n > A7. 
This means that 

n 
1 + h 

is a monotone function of n for n > iV. Therefore, a necessary condition in 
order that 

be bounded for all n is that 
n 

n 

1 + A , 
1 + ^ 

1 + X, 

be convergent. From a well-known theorem on infinite products, 

n 
i + \, 
l+dj 

is convergent if and only if 

S(->+lmr) 
is convergent. If n > N, a < fin + 6n < 2r — a and so 

. (fin + B»\ 
sin \TY~) 

> sin-

Hence if n > iV, then cos /3„ — cos 6n > 2 sin2 a /2. Using this fact, we have 
that if n > iV, then 

•1 + 
1 + Xre 

1 + 4 
) = 2p„(cOS fin — COS 6„) 

w c o s 6n ~\~ pn 
> 

4Pn sin2(J 

(1+Pn) 2 ' 

By assumption the [F, dn] matrix is regular and so by Corollary 2.2 
Zn=i°° PrT1 = + °° • Hence 

Ê(-
n - l \ 

•1 + 1 + X, 

and thus 

n 

1 + dn 

1 + 4 

' ) 
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diverge to plus infinity. Consequently (2.5) implies that ^k=on\Pnk\ is not 
uniformly bounded for all n, and thus (1.2) is not satisfied. This is a contra­
diction to the assumption that the [F, dn] matrix is regular. 

THEOREM 2.3. Let a be given where — w/2 < a < 0. If there is a positive 
integer N such that dn < a for all n > iV, then the [i7, dn] matrix is not regular. 

Proof. Suppose the [F> dn] matrix is regular. Define the terms X„ of the 
sequence {\n} by \n = pne~i6n. The elements Ank of the [F, \n] matrix are 
defined by the relation 

(2-6) IT f x T 1 = ^ AnJ)\Aw = 1, A* = 0, k * 0. 

Since \j = dh where the bar denotes complex conjugate, it follows from (1.5) 
and (2.6) that 

nkd 2^ Ank9 — Z^i P1 

for all 6. This implies that 

(2.7) E \Pn*\ = Z \A*\. 

But the sequence [kn) and the numbers Ank defined by (2.6) satisfy exactly 
the same conditions as did the sequence {dn} and the numbers Pnk in the 
proof of Theorem 2.2. Consequently, using the same method as in Theorem 
2.2, we may conclude that 2Zfc=ow|̂ 4WA:| is not a bounded function of n. Hence 
(2.7) implies that Ylic=on\Pnk\ is not a bounded function of n and so (1.2) is 
not satisfied. This contradicts the assumption that the [F, dn] matrix is 
regular. 

The theorem to be proved next is included here largely because its proof 
best displays the central idea used in the proofs of Theorem 2.2 and Theorem 
2.3. It is also much simpler to apply. 

THEOREM 2.4. Suppose that 6n = a (n = 1, 2, . . .), and that the corresponding 
[F, dn] matrix is regular, then 6n = a = 0. 

Proof. Recall that \dn\ = pn, and let ank denote the elements of the [F,pn] 
matrix. Note that |anfc| = ank. Then using the same method that was employed 
to arrive at the inequality (2.5), we can obtain the equation 

1 + Pi 

Hence the regularity condition (1.2) implies that 

n i + Pi 
3=i i i + ^ i 

is convergent. However, the terms of this product are real and greater than 
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or equal to one, and so by a well-known theorem this product is convergent 
if and only if 

y i i , ( 1 + Pn Y( = y^ 2Pn(cosa — 
£ i I •*" \ | 1 + d j / J Ùi 1 + 2Pwcos0„ 

1) 
i 2 

is convergent. But from Corollary 2.2 J^n^Pn-1 — + °°, so this series is 
divergent unless a = 0. Hence in order for the regularity condition (1.2) to 
be satisfied, we must have a = 0. 

3. A regular [F, dn] matrix. In view of the theorems in § 2, one need only 
consider two types of non-real sequences {dn} in attempting to construct a 
regular [F, dn] matrix. Firstly, those sequences for which 

lim arg dn = 0 (— ir < arg dn < ir). 

Secondly, those sequences {dn} which satisfy both the following conditions: 
(1) there exists a subsequence {nk} of the sequence of natural numbers such 
that Re{dnk) > — \ and Im(dWJb) > 0, and (2) there exists a subsequence {mk} 
of the sequence of natural numbers such that Re(dmk) > — \ and Im(<i^) < 0. 
In this section we will give an example of a [F, dn] matrix of the first type 
which is regular and for which 6n ^ 0. We leave the following as an open 
problem: to find a sequence {dn\ of the second type such that 

lim arg dn ^ 0 
ft->oo 

and such that the [F, dn] matrix is regular; or to show that no such sequence 
exists. 

THEOREM 3.1. Suppose that ^n=i°Pn~l is divergent and 2Zw=ic°̂ w2Pri~1 is con-
vergent, then the [F, dn] transform is regular. 

Proof. Substituting 6 = 1 in the defining relationship (1.5), we get 
Ylk=onFnk = 1 and so condition (1.4) is satisfied. 

Note that the elements ank of the [F, pn] matrix also satisfy ^2k=onWnk\ = 
J2k=onank = 1. From this fact and a relationship of the type (2.2) for the 
numbers ank, it follows that 

(3.1) E E P " P " . . . A I " = IÎ (1 + Pi ) , (»>l) . 
Jc=Q sl + S2-\-...+ Sn+k=1l j=l 

Inserting absolute value signs on both sides of (2.2) and making use of (3.1), 
we obtain 

(3.2) É \Pnlc\ < -^r— E E \dlld? . . . C | 
k=0 si + S2+...+ sn+k=n n \i + d,\ 

TT ! + Pj 
3=1 1+df 
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Note that the convergence of ^,n=i°Qn
2pn~l and the divergence of Y*n=i°Pn~l 

implies that 

lim Bn = 0. 
W->co 

Hence there exists an integer N such that \0n\ < 7r/3 for n > N. Thus for 
n > N, 

_l I ( 1 + Pn Y ^ 2Pw(l — COSflJ pX = ^ 
\ |1 + dn |/ 1 + 2Pn cos ft, + pj ^ pi pn ' 

Now since 1 + x < ex for x real and 1 + pn > |1 + dn\, it follows upon 
applying the above inequality that 

1 + Pn ^ ( 1 + Pn V ^ i l l I 1 + Pn V i / //,2 -K 

for n > TV. In view of this inequality, (3.2) may be written as 

È \p«\ < ff ( i f î f i ) exp { £ fa1} (« > *>• 
But by hypothesis I ^ I ^ ^ P A T 1 is convergent. Therefore, Y,k=in\Pnk\ is uni­
formly bounded for all n and condition (1.2) is satisfied. 

In order to show that the [F, dn] transform is regular it remains only to 
show that (1.3) is satisfied. Using the Cauchy integral formula, (1.5) implies 
that 

(3.4) P _ l f n (t + d\ _dt 
Fnk~ 2*iJc\k \i + djtk+1' 

where c is a circle with centre at the origin and radius 1/4. Recall that N is 
an integer such that \dn\ < ir/3 for n > N. Since 1 + z < ez for real z, it 
follows with t = x + iy that 

! 2 ( t + dn 

1 + 4 
•1 + 

t + 4 
1 + 4 '} 

15 
""" 1 6 ~*~ 2pn C 0 S dn^X ~~ ^ "*" 2pny S i n 6n 

1 + 2pre cos 6n + p^ 

< exp 

< exp 

< exp 

< e x p i2( i + Pny 

for n > N. Taking the positive square root of both sides of this inequality, 
we obtain the inequality 

I* + dn\ 

j — 2f^ COS dn + jpn 

l l + 2pnCOSdn + pi 

J ~Pn 
| o / i i . \ 2 

(3.5) 
1 + 4 

< exp 14(1 + pn)
2) • 
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Hence upon inserting absolute values on both sides of (3.4) and using the 
inequality (3.5), we get 

C n \ AJC p2ir N-l 
t + dj 
l+dj de. 

But 
N-l 

n 
t + dj 

l+ds\ 
is the absolute value of a polynomial in t of degree N — 1, and such a poly­
nomial has a maximum value M on \t\ = \. Hence 

(3.6) |p-|<^.4*«p{-ti?r^I} 
for n > iV. By assumption Xn=i°°Pw~1 = + °°, and so 

n  

Km E 77, i P[ N 2 = - co. 
1H0O J-W * I J- T P^J 

Hence, (3.6) implies that 

lim |Pn , | = 0 

for all k. 

4. Summation of power series. Suppose we have a function g(z) defined 
by a power series with a non-zero radius of convergence, then we would like 
to know in what domain the [F, dn] matrix of Theorem 3.1 sums the sequence 
of partial sums of this power series to its analytic continuation by radial 
extension. In view of a theorem by Okada (7), one need only consider the 
domain in which the geometric series with partial sums 

(4.1) sn(z) = (1 - z)-1 - zn+1(l - s ) " 1 

is summed to its analytic continuation (1 — z)~l. 

T H E O R E M 4 .1 . Suppose Sn=i°0Pn~1 is divergent, Sw=i00^n
2Pn~1 is convergent, and 

lim pn = + oo , 
7l->00 

then the [F, dn] matrix sums the sequence whose terms are given by (4.1) to 
(1 - z^ifReiz) < 1. 

Proof. Let {an(z)\ denote the [F, dn] transform of the sequence {sn(z)\ 
given by (4.1), then 

(4.2) an(z) = (1 - z)-1 E Pnk - *(1 - z)-1 £ Pnkz\ 

Using the fact that J^k=onPnk = 1 plus the relation (1.5), (4.2) can be written 
as 
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(4.3) „„(*) = (1 - z)-1 - 2(1 - z)-1 f [ T + Z . 

Let z = x + £y. Since 1 + ze; < ew for w real, we have 

2 

< exp (4.4) 

where 

Note that 

since 

2 + 4 
1 + 4 

J2pn[(x - 1) cos 6n + y sin flw] 2ewj 
I 1 + 2Pn cos 0W + p* "^ A. / ' 

2en = 1 
1 + 4 | 

lim en = 0 

2 p«. 

lim p„ = oo. 
n-ïœ 

Taking the positive square root of both sides of (4.4), we get 

2 + 4 | ^ _ / p j ( * — 1) cos 9n + y sin 0n] , e\ (4.5) 

Since 
1 + 4 

^ pj(x — 1) cos 9n + y sin flw] e„ 
^ exp ) - ~2 i 

1 + Zpn COS dn + pn pn 

lim 6n = 0 

and Z^i^Pn - 1 = + °° i (4.5) implies that 

i i i + 4 ' 
if x — 1 < 0. Therefore (4.3) implies that 

lim (rn(z) = (1 — s ) - 1 

w->oo 

if Re (2) < 1. This completes the proof of the theorem. 

COROLLARY 4.1. Suppose Y.n=i°Pn~l = + 0 0 , Hn=iœPn~% = + 0 0 , 

E»-!00/^"1^2 < + °° » and 

lim pA = + °°, 

then the [F, dn] matrix sums the sequence {sn{z)\ whose terms are given by (4.1) 
to its analytic continuation (1 — z)~x for all z such that Re (2) < 1 and also for 
all z such that Re (2) = 1 and I m (z) < 0. 

Proof. Since 

lim 6n = 0 and lim pn = + 00, 

this corollary follows directly from the theorem except for z such that 
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Re (2) = 1 and Im (is) < 0. As in the previous theorem let z = x + iy. Placing 
x = 1 in (4.4), we get 

z + 4 
1 + 4 < 

Since 

e x p / 2Pnysin ft» + y2 X 
P \l + 2pwcos0„ + pi) ' 

lim pA = + °° , 

there exists N such that 2pn sin Bn > — y + pn6n if n > N. Since y < 0, we 
have 

z + dn 

1 + 4 
< exp Pfflny whenever n > N. 

12(1 + a,)' 
Since y < 0 and S ^ ^ P » - 1 ^ diverges to plus infinity the corollary follows. 

If we take pn = na and dn = n~1+a, the hypotheses of Corollary 4.1 are 
satisfied for \ < a < 1. 

Sn=l°°Pre ^ COROLLARY 4.2. Suppose Y^n^prT1 = + °° 
En-i00^-1»»2 < + » , a « d 

lim P A = + oo, 

then the [F, dn] matrix sums the the sequence {sn(z)\ whose terms are given by 
(4.1) to its analytic continuation (1 — z)~l for all z such that Re (z) < 1 and 
also for all z such that Re (2) = 1 and Im (2) > 0. 

The proof of this corollary is similar to the proof of Corollary 4.1. 

THEOREM 4.2. Suppose Yln=i°Pn~l is divergent, 

lim 0n = 0, 

and 

lim Pn = + 00 , 

then the sequence {<rn(z)}, whose terms are given by (4.2), is divergent if Re(2) > 1. 

Proof. Assume z is given such that Re (2) > 1. From (4.3) it follows that 
the sequence {o-n(z)\ is divergent if the product 

2 

n 
Z + dn 
1 + 4 

is divergent to infinity. Since Re(z) > 1, we have \z + 4 | > |1 + 4 | for n 
sufficiently large. Therefore, using a well-known theorem, the product 

n z + 4 
1 + 4 

is divergent to infinity if and only if the series 
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S(-1 + ln̂ D (4.6) 

diverges to infinity. Thus to prove the theorem we need only show that (4.6) 
diverges to infinity. A typical term of the series (4.6) is given by 

(4.7) - 1 + 
z + dn 

l+dn 

\z\2 - 1 + 2(x — l)pn cos 6n + 2ypn sin 6n 

| 1 + 4 | 2 

where z = x + iy. Let a (0 < a < T/2) be given. Since x > 1, 

and 

lim dn = 0, 

lim pn = oo , 

there exists N such that 2pn > 1 + pni \y sin 6n\ < %(x — 1) cos 0n, and 
cos 6n > 4 cos a whenever w > iV. Also, we have |z|2 > 1 and |1 + dn\ < l+pn. 
Using these relations (4.7) becomes 

(4.8) -1 + z + 
l+dn 

> 
(x — 1 ) cos < 

Pn 

for n > N. Since l ^ i 0 ^ - 1 = + °° by hypothesis, (4.8) implies that the 
series (4.6) diverges to plus infinity. 

THEOREM 4.3. Suppose that 

\im pn 

and that 2Zw=i°°^2 converges, then the [F, dn] matrix sums the sequence {sn(z)}, 
whose terms are given by (4.1), to its analytic continuation for all z such that 
\z + p\ < 1 + p. 

Proof. Let {<rn(z)} denote the [F, dn] transform of the sequence {sn(z)\ 
whose terms are given by (4.1), then using the same argument as was employed 
to obtain (4.3) and (4.5) we obtain 

(4.9) 

and 

(4.10) 

,„(«) = (i - s)-1 - «a - zy1 n f-Jf • 

Z + dn 

1 + 4 
However, since 

< exp 
2 — 1 + 2pn cos 6n(x — 1) + 2pny sin dn 

2(1 + 2pncos6n + pi) 

lim 6n = 0 and lim pn = p, 

we have 
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I^l2 — 1 + 2Pn(x - 1) cosdn + 2Pny sin 6n _ \z\2 - 1 + 2p(x - I) + en 

l + 2pncos6n + p2
n (1 + P) 2 

where 

lim en = 0. 

Using this equality, (4.10) can be written as 

(4.11) z + dn 

1 + 4 
< e x p \ 2(1+ p)2 J" 

Suppose z such that |z + p\ < 1 + p is given. Then there exists a > 0 such 
that \z + p|2 < (1 + p)2 - a. Since a > 0 and 

lim tn = 0, 
»->00 

there exists an integer N such that |e„| < a for n > iV. Since |s[2 — 1 —f-
2p(x - 1) = \z + P|2 - (1 + p)2, (4.11) becomes 

(4.12) 
Z + dn 

1 + 4 
< e x J l * + P l 2 - ( P + 
< e x p \ 2 (1+ p) 

li!±a} 

for n ^ N. But since {|z + p|2 — (p + l ) 2 + a} (1 + p)~2 is a negative con­
stant, (4.12) implies that 

s + d. 0 

for all z such that |s + p\ < 1 + p. Therefore, (4.9) implies that 

lim an(z) = (1 — z)~x 

W->co 

for any z such that \z + p\ < 1 + p. This completes the proof of the theorem. 

Note that the convergence of {(rn(z)} to (1 — z)~l is uniform for all z inside 
a circle concentric with the circle \z + p\ = 1 + p and having a radius less 
than 1 + p . 

Notice that in the proofs of Theorem 4.1 and Theorem 4.3 we require only 
that 

lim 0n = 0. 

We made the assumption that Y*n=\°Qn2Pn~l is convergent since in Theorem 3.1 
we proved the [F, dn] matrix regular in this case only. Notice also that both 
Theorem 4.2 and Theorem 4.4 contain the hypothesis 

lim 6n = 0. 
W->oo 

This would seem to indicate that there is some possibility of proving Theorem 
3.1 with the hypothesis S a - i ^ V / T 1 < + °° replaced by 
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lim Bn = 0. 
n-»oo 

We leave this as an open problem. 
If \z + p\ = 1 + p, (4.10) can be written as 

(4.13) z + dn 

l+dn 
< exp 

J2(x - 1) (At cos fl» - P) + 2pny sin flw 

2(l + 2Pncos0n + p2) J ' 

Suppose that pn cos 0W > p, 0W > 0, and 2 sin 0n > 0W for » > iV; and that 
y < 0, then (4.13) reduces to 

(4.14) z + dn < exp 12(1 + Pn)
2J 11 + 41 

for w > 2V since x < 1. From the inequality (4.14) and Theorem 4.2, we get 
the following 

COROLLARY 4.3. Suppose 
lim pn = p, 

Sn=i°°0» = + °° » Sn=i°°0n2 < + °°, and that pn cos 0W > p /or w sufficiently large, 
then the [F, dn] matrix is regular and sums the sequence {sn(z)}, whose terms 
are given by (4.1), to (1 — z)~l for all z which satisfy the condition \z + p\ < l + p 
and for all z which satisfy both the condition that \z + p\ = 1 + p and the con­
dition lm(z) < 0. 

Similarly we have another corollary which is the same as Corollary 4.3 
except that Yln=i°On = + °° is replaced by J2n=i°0n = — °° in the hypothesis, 
and Im(js) < 0 is replaced by Im(s) > 0 in the conclusion. 

THEOREM 4.4. Suppose 
lim pn = p, lim dn = 0, 

and z is given such that \z + p\ > 1 + p, then the sequence {o-n(z)}7 whose terms 
are given by (4.9), is divergent. 

Proof. Suppose z such that \z + p\ > 1 + p is given. Then there exists 
0 < a < 8 such that 

\Z + P\2> ( 1 + P ) 2 ( 1 + 2 a ) . 
Hence we have 

|»|* - 1 = -2p(x -l)+\z + P\2 - (1 + P)2 > - 2 p ( * - 1) + 2a(l + P)2 . 

Using this inequality, we get 

(4.15) \z + dn\
2 - |1 + dn\

2 = |z|2 - 1 + 2Pre(x - 1) cos 6n + 2Pny sin 6n 

>2(x- l)(p w cos dn p) -f- 2,ypn sin 0W -)- 2a:(l-j~p)2« 

But since 
lim pn = p and lim 0n = 0, 
n->co n->oo 
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there exists an integer N such that if n > N, then 

]2(x - l)(p„ cos 0n - p) + 2yPn sin Bn\ < a(l + p)*. 

Therefore if n > N, (4.15) can be written as 

|s + 4 | 2 - | 1 + 4 | 2 > « ( 1 + P)2. 

Dividing through by |1 + dn\
2, we get 

\z+dn\\ , , / 1 + p V 
(4.16) 

whenever n > N. Since 
1 + 4 > l + . 

lim \dn\ = p, 

(4.16) implies that 

lim s + 4 
1 + 4 > 1 + ^ 1 . 

But this is a sufficient condition in order that 

I z + 4 
n 1 + 41 

diverge to plus infinity. Hence (4.9) implies that the sequence {<rn(z)} is 
divergent. 

5. Analytic continuation. Upon setting dn = (1 — r)r-\ the [F,d„] 
matrix becomes the classical Euler matrix of order r. Since Agnew (1) has 
shown that the Euler matrix provides the analytic continuation of a power 
series for cases in which the matrix is not regular, it is natural to raise the 
following question. Does the [F, dn] matrix also provide the analytic con­
tinuation of power series for some sequences {dn} for which it is not regular 
other than the above-mentioned cases studied by Agnew? By Corollary 2.2 
the [F, dn] matrix is not regular if Y.n^PrT1 converges. The proposed question 
is answered for these non-regular matrices by observing the results of the 
following theorem. 

THEOREM 5.1. Let En-i00*»-1 < « , Sn{z) = E ^ o X ^ and j\z) = Zn=<Tanz
n 

be regular in a neighbourhood of the origin. Let {an
(p)(z)} denote the [F, dn] trans­

form of the sequence 0, 0, . . . , 0, So(z), Si(z), . . . , where —v is an integer 
denoting the number of zeros in the sequence preceding the term S0(z). Let {an

(v) (z)}, 
where v is a positive integer, denote the [F, dn] transform ofSv(z), Sv+i(z), 5„+2(z).... 
Then {an

{v)(z)} converges uniformly for all z in any bounded domain except 
that z must be outside some neighbourhood of the origin when v < — 1. 

Proof. Since f(z) is regular in a neighbourhood of the origin 
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where c is a small circle with centre at the origin. Replacing an by this integral, 
we obtain 

Since/(/) is regular inside the circle c, it follows by the Cauchy integral theorem 
that 

àJ.^{'-(7)"}*-
for m < 0 and s 3̂  0. If the elements of the [F, dn] matrix are denoted by Pnkl 

then it follows from (5.1) and (5.2) that 

™ •4"M-àX^.S*-{,-(7rH}* 
Ziri J ct — Z k=0 

~2^ijcr="z\v S M i / *• 
But using the fact that YLn=^nPnk = 1 and the relation (1.5), (5.3) reduces to 

„<»,* _ J_ f / ( ^ _ J_ ÇML(JLY+1 TT ( ^ ' L 

Hence it follows that 

(5.4) „<?lW - .»(» = ^ J / f (f)"+1 ( i+^o- 1 n [£%)#. 
If we let |/| = 5 and \z\ = r and insert absolute values on both sides of (5.4), 
we obtain 

(V) I N ( 0 / M - 1 I T 
+ Pi / Wl n "h Pi ] ^2r 

y u + ^ r n V|r+̂ T/Jo l/(^-kiïi(*) -*;''(*)I < ^ \ j 
Since /(/) is regular on |/| = s, there exists a constant Q such that |/(/)| < Q 
for all / such that \t\ = s. Hence 
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+ Pj 
(5.5) ks.w - *<•> « i < i r J L _ r (t) *• n ^ 

Employing the same type of argument that was used to obtain (4.5), we 
have 

- + Pn 
(5-6) T Ï T ^ T < exp 

r ! - 1 + 2 p , ( r - c o s g „) | 

2(l+2p„cos0„ + p*) ) 

Since r/s is a constant and since "^n^-TprT1 < + °°, it follows from (5.6) that 
there exists a constant L(r) such that 

r , 
n - + Pj 

(5.7) FI TfTTÎ < L( r ) 

j=l \L -\~ (lj\ 

for all n. We write L(r) to indicate that although L(r) is a constant for fixed 
z, L(r) is a function of r. Using the inequality (5.7) and summing (5.5) over 
n, we get 

(5.8) £ | f f&(*) - 4 " ( Z ) | < <2L(r)(r/sr+1 f ) |1 + dn+1\~\ 
n=0 n=0 

if r 9e 0 for v < — 1. Since 2^=o°°|l + ^ + i | _ 1 is convergent by hypothesis, 
it follows that the left-hand series in (5.8) is uniformly convergent for z in 
any bounded domain except that z must be outside some neighbourhood of 
the origin when v < — 1. 

Since an+1^(z) - oV^O*) = Z ^ o ^ - f i ^ ( « ) ~ ^ ' H ^ l , it follows that the 
sequence {an

(v)(z)} is uniformly convergent for all z in any bounded domain 
except that whenever v < — 1 we must also have \z\ > a for some a > 0. 
This completes the proof of the theorem. 

From (5.1) it follows that Sn(z) is a polynomial of degree n in z. Hence 
from (5.3) it also follows that <rn

{v) (z) is also a polynomial of degree n in z. 
Define a(v) (z) by 

*W(z) = limer»<'>(s) 
W->CO 

whenever the limit exists. Note that a(v) (0) is undefined for v < — 1. Since 
{o-n

(,,)(s)} is uniformly convergent in any bounded domain for v > — 1 , it 
follows that <J{V){Z) is an entire function of z for z> > — 1. Therefore, if the 
analytic continuation of f(z) has singular points, then f(z) 7e- a{v)(z) for 
v > — 1. Now suppose i> < — 1. By assumption f(z) is analytic in a circle 
about the origin, and from Theorem 5.1 a(v) (z),v < — 1, is analytic outside every 
circle about the origin. Therefore, a(v) (z) 9e f(z) unless f(z) is entire. Thus the 
[F, dn] transform of Theorem 5.1 does not give the analytic continuation of a 
single function defined by a power series whose analytic continuation possesses 
a singularity. If f(z) is entire we cannot say that a^v) (z) 5* f(z) except in case 
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v = — 1 where it is easy to prove that or(-1)(0) 7^/(0). However, we have no 
problem of analytic continuation if f(z) is entire as the power series itself 
converges for all z in this case. Let us say that the [F, dn] matrix provides 
an effective method of analytic continuation for a function of f(js) defined by 
its power series if f(z) is not entire and if aiv)(z) = f{z) for some v. Then we 
may conclude that the [F, dn] matrix does not form an effective analytic 
continuation procedure if ^n^\°Pn~l is convergent. 
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