INEQUALITIES FOR A CLASS OF TERMINATING
GENERALISED HYPERGEOMETRIC FUNCTIONS

by T. M. MACROBERT
(Received 3rd February, 1949)

§ 1. Introductory. By applying Gauss’s Theorem it can be seen that, if » is a positive
integer and « is not integral,
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In section 2 it will be proved that, if
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where « and B are not integers,
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where p and M are constants independent of n.
Now, by the Ratio Test, the series
s

nel 92n

converges absolutely if | x |<<4. Hence, by the Comparison Test, the series

xﬂ

@
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also converges absolutely if | z | <4.
The formulae
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where —7<<amp z<C7 will be required in the proof ; in these formulae the convergence is uni-
form if »
—mTt+e<S ampz= w—e.

The proof can easily be extended to more general hypergeometric functions of the type
F(n).
A similar discussion of the function
~n, 0, B; 1
(s )

will be found in section 3.
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§ 2. Proof by Contour Integration. The contour DOABCD (Fig. 1) consists of DA, the part
of the z-axis from —n?, where # is a large positive integer, to n + 4, indented above the z-axis
at the points 0, 1, 2, ..., n, the segment AB of the line x =n + {, B being the point where the line
meets the circle | z | =n2, and the arc BCD of that circle. Consider the integral

"' ez cosec (nz) f(z) dz,
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taken round the contour, where
F2) = Ir'l-—a+2n-2)I'(1 -B+2n —2)
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If n is large enough all the singularities of the integrand will lie outside the contour and
the value of the integral will be zero. Thus

n+}
0= —mix(n) F (n)+ PI e? % cosec (wx) f(x)dx +J,; + Jz,

where J; and J, are the integrals along AB and BCD respectively and
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by (4).
Hence, on taking imaginary parts, we have

Fn)= (n)j_n.?cos () (@) i+ s T + ).

o] G.M.A.
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Now, in the integral replace 2 cos (nx) by e#® + ¢~#7% geparate the two parts and replace
them by integrals round DCBA and the reflection of DCBA in the z-axis respectively. Then

e L+ )~ s (L + T+ Ly + ),
where I, and I, are the integrals of e*"*f(z) along 4B and the arc BCD respectively and I, and
I, are the integrals of e~*"%*f(z) along the reflections of 4B and the arc BCD in the z-axis
respectively.
Now 2siné 7 3 " — 1
0 2 NIG -y LG -8-y) '} -y+n-iy)
‘where cos ¢ = (n +3)/n?, so that, when n->wo , ¢—>1n.
The factors 1/I'(% —4y) and 1/I'(} — 8 —iy) are finite and independent of n for finite values
of y ; while, when y is large, by (3),
1 e—1-8~2iy
TG - TG -5-iy) "~ 2n(-F-) (-} -8-w) >
e—1-8—24yp—xvgiv—yy
T2 R4ty [V [ h40+iy [’

where x=tan~-1(2y), in the third quadrant, and  =tan—1{y/(} +38)}, in the third or fourth
quadrant. Thus, when y—, ¥ and ¢ both — — 4=, and therefore

Fn)

e | F4+8+ay |8
| P —-w) (3 -0 -1y) |
tends to a definite limit when y—c . This function is therefore bounded for large values of y,

and consequently for 0 S y < .
Thus

e~y
| TG -iy) T(3-8-1y) | no’
where p is the larger of 0 and 23, is bounded for 0 <y < n?*=< .
Again, from (4),
FG-B+n-iy)
I'g-y+n-1iy)

(n —1y)r—F = (n? 4 y2)hy—iBg—iwly=B),

where w =tan—!(y/n), in the first quadrant. Therefore
I'G-B+n-1iy)i 1
IE-y+n—iy)|n’

where o is the larger of 0 and 2y — 28, is bounded for 0 S y < n* < .

Next . )
I‘(% —a+n— ’by) el+a+2w( - % —_— - iy)—¢+"“”
I~/

I'G+n+wy) (% +n +iy)tintiy
~ €2 (n2 4 yZ)—}—}u—ive—iw(l-u+2n),

where w =tan~1(y/n) in the first quadrant.
Therefore
't —a+n—1iy) 1

TF'G+n+iy) |n’
where 7 is the larger of 0 and ~2 ~2«, is bounded for 0 Sy < n*< .
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Thus the modulus of the integrand, divided by n#+°+7, is bounded for 0 <y < n?< 0.
Therefore, since the range of integration is of length %2 sin ¢,
I,

nk
e | <Y

192n’

where M, is a definite positive number independent of =.
Similar results hold for I; and J;.
Again,

I'-2)I'l-a+2n-2)I'(1 - B +2n —2)
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where z =n2 and —z=n2!6-", Here, when z is large,
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Hence
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where M, is a definite positive number independent of n.
Similar results hold for J, and I,.
Thus, finally, we arrive at the inequality (2).

§ 3. Discussion of a Second Type of Generalised Hypergeometric Function. It is proposed

0 prove that, if .
-n,a,B; 1
F(n)#F(y_%%,a_%», ....................................... ©)

where 7 is a positive integer, then
JF () | S MaF2%, it ra e (10)

M and u being constants independent of n.
It then follows that the series
g’ F(n)x
n=1
s absolutely convergent for | x |<}.

Let m be a positive integer greater than the larger of —« and —B. Let the contour
4BCA be formed of the segment AB of the xz-axis from m +} to »?%, where » is large, in-
lented above the axis at m +1, m+2, ..., n, the part of the circle | z | =n? above the z-axis
rom B to the point C, where it crosses the ordinate at 4, and the line CA4.

Now, consider the integral

J.ezw f(2)dz,

aken round the contour of Fig. 2, where
I'(-2)I'(«+2) (B +%)

R R s e L e (R (11)
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Cc2 ' ) G.M.,A,
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"
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Since all the singularities of the integrand lie outside the contour, the value of the integral
is zero, and therefore

0 =imk (n){F (n) ~the first m +1 terms of the series} + P Jm e*imaf(xydx +J, +J,,
m+}

where
I'(e) I'(B)
k(n)= T )Ty —In) (e —Tm) wrooereeeoemmeemsseseeess (14)
so that [ re(0) | <<D2780E=7=3, iiitiiiiriiiiiiiiriiini e (15)
D being a constant independent of n, and J; and J, are the integrals of
ezi‘rrzf(z)

along BC and CA respectively.
Hence, on equating imaginary parts, we have

E (n) =F (n) —the first m +1 terms of the series

1 ' . 1
= -m((n) . 2 cos nx sin #x f(x)dx —-—K—(—n—) I(J,+J,)
- j (e + e~n2) b (z)dar ( ST, +7))
where
_ I'(ax+2) (B +2)
¢(z)_1'v(1 +Z)T(n+l—Z)T(y-%n+z)1"(8—%n+z)' ..................... (16)
Thus
En)= - P )(I +I,+1,+1,) - ( )I(J1+J)
where I, and I, are the integrals of
eiﬂ:¢ (Z)
along BC and CA respectively, and I; and I, are the integrals of
et (2

along the reflections in the x-axis of BC and CA respectively.
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On referring to (13) and (12) and applying (4) it can be seen that, on BC,
| e (2) | <@ | 2 |=+F-r=21,

where @ is a constant independent of . Thus the moduli of the integrals J; and I, are each
less than
Hn2a+2ﬁ—2y—26,
where H is a constant independent of n. A similar result holds for I,.
Again, on AC,
I« +2)
I'(l+2)

where 0 < y < »? and L and N are constants independent of n. Also, from (3),

(- +2)T(B+2) (i =m)r=n(ig)s|
Th-Tnsal®-tn+a)| | G-I |"

<Lya—1 é an 20—2 I’

where R and = are constants independent of =,

=R (y2 + in2)*ne—¢ye_iﬂu nr
(y2 4 n2)<}ne—2xy 4

where ¢ =tan—1( —y/n) in the second quadrant and x =tan~1( -~ 2y/n), also in the second quad-
rant. When y—>n?—>w,  and y both —37. Thus the expression is less than

Qn7,
where @ is a constant independent of n.
It follows that the moduli of the integrals J, and I, are each less than
8ne,
where o and § are constants independent of n.

A similar result holds for 7,.
Hence, finally, (10) is obtained.
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