L'INVARIANT DE HASSE-WITT DE LA FORME DE KILLING

JORGE MORALES

RÉSUMÉ. Nous montrons que l'invariant de Hasse-Witt de la forme de Killing d'une algèbre de Lie semi-simple L s'exprime à l'aide de l'invariant de Tits de la représentation irréductible de L de poids dominant $\rho=\frac{1}{2}$ (somme des racines positives), et des invariants associés au groupe des symétries du diagramme de Dynkin de L.

1. Introduction. Soit k un corps de caractéristique nulle et soit L une algèbre de Lie semi-simple définie sur k. Nous rappelons que la forme de Killing sur L est la forme quadratique définie par

(1)
$$Q_L(x) = \text{Tr}(\text{ad}(x)^2),$$

où $ad(x): L \to L$ est l'opérateur linéaire défini par ad(x)(y) = [x, y], où [,] est le produit de Lie. Il est classiquement connu que L est semi-simple si et seulement si Q_L est non-dégénérée [1, Chap. I, Section 6].

Dans cet article nous nous proposons de déterminer l'invariant de Hasse-Witt de Q_L pour une algèbre de Lie semi-simple quelconque L. Rappelons que pour une forme quadratique $Q = \langle a_1, a_2, \ldots, a_n \rangle$, donnée sous forme diagonale, l'invariant de Hasse-Witt de Q est défini par

(2)
$$h(Q) = \sum_{i \le j} \left[\frac{a_i, a_j}{k} \right] \in \operatorname{Br}(k),$$

où $[a_i, a_j/k]$ est la classe dans le groupe de Brauer Br(k) de l'algèbre de quaternions $(a_i, a_j/k)$. Il est bien connu que h(Q) est indépendant de la diagonalisation choisie pour Q (voir, par exemple, [17, Chap. 2, 12.8]).

La détermination de l'invariant de Hasse-Witt de la forme Q_L est un problème naturel qu'on peut se poser plus généralement pour toute k-algèbre qui possède une forme «trace» non-dégénérée. Ce problème et certaines de ses variantes ont été étudiés notamment dans le cadre des algèbres commutatives étales [20], [8], [5], [22] et des algèbres centrales simples [21], [24], [13], [16], [4].

Dans le cas des algèbres de Lie semi-simples, nous montrons que $h(Q_L)$ est en étroite relation avec un invariant défini par Tits dans [25] pour les représentations de L (théorème 4.2). La définition de cet invariant est rappelée au paragraphe 3.

Au paragraphe 4 nous établissons une formule de comparaison entre $h(Q_L)$ et $h(Q_{L_{\rm qdép}})$, où $L_{\rm qdép}$ est une algèbre quasi-déployée du même type interne que L (théorème 4.2).

Reçu par les éditeurs le 19 mars 1998; revisée le 30 juillet 1998.

L'auteur remercie le *Louisiana Education Quality Support Fund* pour son soutien financier durant la préparation de ce travail (contrat LEQSF (RF1995-97)-RD-A-40).

Classification (AMS) par sujet : primaire: 11E04, 11E72, 17B10, 17B20; secondaire: 11E88, 15A66. ©Société mathématique du Canada 1998.

1324 JORGE MORALES

Finalement, au paragraphe 5, nous calculons $h(Q_{L_{\rm qdép}})$ pour une algèbre quasi-déployée (théorème 5.2 et corollaire 5.3). Ce résultat, combiné avec ceux du paragraphe 4, donne la formule générale pour $h(Q_L)$ d'une algèbre de Lie semi-simple quelconque L.

La notation ci-dessous sera utilisée tout au long de cet article:

```
un corps de caractéristique nulle
k
\bar{k}
             la clôture algébrique de k
\Gamma_k
             le groupe de Galois absolu Gal(\bar{k}/k)
             le groupe de Brauer de k, identifié à H^2(k, GL_1) et écrit additivement
Br(k)
             l'image de a \in k^{\times}/k^{\times 2} par l'isomorphisme canonique k^{\times}/k^{\times 2} =
[a]
             H^1(k, \mathbb{Z}/2\mathbb{Z})
L
             une algèbre de Lie semi-simple sur k
Q_L
             la forme de Killing de L
             l'invariant de Hasse-Witt de Q_L (au lieu de h(Q_L))
h(L)
d(L)
             le déterminant de Q_L (au lieu de d(Q_L))
Η
             une sous-algèbre de Cartan de L définie sur k
\overline{V}
             le produit tensoriel V \otimes_k \bar{k}, où V est un espace vectoriel sur k.
\Phi(L,H)
            le système de racines de \bar{L} par rapport à \overline{H}.
```

REMERCIEMENT. L'auteur remercie le referee pour ses commentaires et pour avoir suggéré d'inclure l'exemple 2.

2. Quelques rappels sur les algèbres de Lie. Avec les notations précédentes, soit $\Phi = \Phi(L, H) \subset \overline{H}^*$ l'ensemble des racines de \overline{L} . Comme H est définie sur k, l'ensemble Φ porte naturellement une action du groupe de Galois Γ_k .

DÉFINITION 1. Nous disons que H est déployée sur k si l'action de Γ_k sur Φ est triviale (c'est-à-dire si toutes les racines sont définies sur k). Nous dirons que L est déployée si elle admet une sous-algèbre de Cartan déployée.

Nous aurons aussi besoin de la notion plus générale d'algèbre quasi-déployée.

DÉFINITION 2. Une algèbre de Lie semi-simple L définie sur k est dite *quasi-déployée* si L admet une sous-algèbre de Borel B définie sur k.

Étant donné une algèbre de Lie semi-simple L définie sur k, nous pouvons lui associer l'unique algèbre de Lie déployée $L_{\rm dép}$ sur k ayant le même système de racines [2, Ch. VIII, Section 4, No 3]. Ceci permet de considérer L comme une forme tordue de l'algèbre déployée associée $L_{\rm dép}$ et d'appliquer le formalisme général de la descente galoisienne avec $L_{\rm dép}$ comme «point base».

Soit $\operatorname{Aut}(\bar{L}_{\text{dép}})$ le groupe des automorphismes de $\bar{L}_{\text{dép}}$, pris comme groupe algébrique défini sur k. Soit $f: \bar{L} \to \bar{L}_{\text{dép}}$ un isomorphisme sur \bar{k} . L'application $c: \Gamma_k \to \operatorname{Aut}(\bar{L}_{\text{dép}})$ définie par $c(\gamma) = f \circ \gamma(f)^{-1}$ est un 1-cocycle dont la classe dans $H^1(k, \operatorname{Aut}(\bar{L}_{\text{dép}}))$ est indépendante du choix de f. Cette classe sera notée par [L]. Par le formalisme général de descente galoisienne [19, Chap. 10], la correspondance $L \mapsto [L]$ donne lieu à une

bijection

(3)
$$\left\{ \begin{array}{l} \text{Classes d'isomorphisme} \\ \text{d'algèbres de Lie } L \text{ sur } k \\ \text{avec } \bar{L} \simeq \bar{L}_{\text{dép}} \end{array} \right\} \longleftrightarrow H^1\left(k, \operatorname{Aut}(\bar{L}_{\text{dép}})\right).$$

Comme nous le verrons par la suite, le fait qu'en général le groupe $\operatorname{Aut}(\bar{L}_{\operatorname{dép}})$ n'est pas connexe au sens de la géométrie algébrique pose certains problèmes techniques pour les applications que nous avons en vue. Nous allons donc avoir à considérer la composante connexe de l'élément neutre $\operatorname{Aut}_0(\bar{L}_{\operatorname{dép}})$ et le quotient fini $\Sigma := \operatorname{Aut}(\bar{L}_{\operatorname{dép}}) / \operatorname{Aut}_0(\bar{L}_{\operatorname{dép}})$. Il est bien connu que Σ s'identifie canoniquement au groupe des symétries du diagramme de Dynkin de $L_{\operatorname{dép}}$ [2, Chap. VIII, Section 5, No 1].

Soit $H_{\text{dép}} \subset L_{\text{dép}}$ une sous-algèbre de Cartan. Nous fixons une fois pour toutes un épinglage $E_{\text{dép}}$ de $(L_{\text{dép}}, H_{\text{dép}})$ au sens de [2, Ch. VIII, Section 4, No 1]. Le sousgroupe Σ' de $\text{Aut}(\bar{L}_{\text{dép}})$ qui préserve $E_{\text{dép}}$ s'identifie à Σ par la projection canonique j: $\text{Aut}(\bar{L}_{\text{dép}}) \to \Sigma$; donc la suite exacte

$$(4) 1 \longrightarrow \operatorname{Aut}_{0}(\bar{L}_{\operatorname{dép}}) \longrightarrow \operatorname{Aut}(\bar{L}_{\operatorname{dép}}) \stackrel{j}{\longrightarrow} \Sigma \longrightarrow 1$$

est scindée sur k [2, Chap. VIII, Section 5, No 3, corollaire 1].

Soit $s: \Sigma \longrightarrow \operatorname{Aut}(\bar{L}_{\operatorname{dép}})$ la section de j d'image Σ' . Nous noterons par π le k-endomorphisme idempotent de $\operatorname{Aut}(\bar{L}_{\operatorname{dép}})$ donné par $\pi = s \circ j$.

DÉFINITION 3. Nous disons que deux algèbres de Lie semi-simples L et L' sur k sont du même type interne si L' s'obtient en tordant L par un 1-cocycle à valeurs dans $\operatorname{Aut}_0(\bar{L})$.

LEMME 2.1. Soit π_* : $H^1(k, \operatorname{Aut}(\bar{L}_{\operatorname{dép}})) \to H^1(k, \operatorname{Aut}(\bar{L}_{\operatorname{dép}}))$ l'application induite par π en cohomologie. Alors:

- (i) L_1 et L_2 sont du même type interne si et seulement si $\pi_*[L_1] = \pi_*[L_2]$
- (ii) L est quasi-déployée si et seulement si $\pi_*[L] = [L]$.

DÉMONSTRATION. (i) Soient f_i : $\bar{L}_i \to \bar{L}_{\text{dép}}$ (i=1,2) des isomorphismes et soient c_i les 1-cocycles associés, c'est-à-dire, $c_i(\gamma) = f_i \gamma (f_i)^{-1}$ pour $\gamma \in \Gamma_k$. Quitte à remplacer c_1 par un cocycle dans la même classe de cohomologie, nous pouvons supposer $\pi c_1(\gamma) = \pi c_2(\gamma)$. Posons $g = f_1^{-1}f_2$. Nous avons par calcul direct que $g\gamma(g)^{-1} = f_1^{-1}c_2(\gamma)c_1(\gamma)^{-1}f_1$. Comme $c_1(\gamma)c_2(\gamma)^{-1}$ est dans la composante neutre, il en est de même pour $g\gamma(g)^{-1}$; par conséquent L_1 et L_2 sont du même type interne.

Réciproquement, si $g: \bar{L}_2 \to \bar{L}_1$ est un isomorphisme tel que $g\gamma(g)^{-1} \in \operatorname{Aut}_0(\bar{L}_1)$, nous définissons $f_2 = f_1g$ et par le même calcul nous voyons que $\pi c_1(\gamma) = \pi c_2(\gamma)$.

(ii) Supposons $\pi_*[L] = [L]$. La classe [L] est alors représentée par un 1-cocycle $c\colon \Gamma_k \to \Sigma'$. Le sous-groupe Σ' préserve en particulier une sous-algèbre de Borel $\bar{B}_{\text{dép}}$ définie sur k. La forme de $B_{\text{dép}}$ tordue par c est une k-sous-algèbre de Borel de L; donc L est quasi-déployée.

Réciproquement, comme L a une sous-algèbre de Borel définie sur k, nous pouvons choisir un épinglage E de \bar{L} qui est préservé par le groupe de Galois Γ_k . Soit $f\colon \bar{L}\to \bar{L}_{\text{dép}}$ un \bar{k} -isomorphisme. Le groupe $\operatorname{Aut}_0(\bar{L}_{\text{dép}})$ opérant transitivement sur l'ensemble des épinglages de $\bar{L}_{\text{dép}}$, nous pouvons supposer que $f(E)=E_{\text{dép}}$; donc nous avons $c(\gamma):=f\gamma(f)^{-1}\in \Sigma'$ pour tout $\gamma\in\Gamma_k$.

3. L'invariant de Tits. Dans ce paragraphe, nous rappellerons brièvement une construction due à Tits [25] pour les représentations des groupes réductifs. Nous avons exprimé cette construction dans le langage des algèbres de Lie.

Soit $L_{\text{qdép}}/k$ une algèbre de Lie semi-simple quasi-déployée fixée.

DÉFINITION 4. Deux k-sous-algèbres de Lie $L_1, L_2 \subset \bar{L}_{qd\acute{e}p}$ avec $\bar{L}_1 = \bar{L}_2 = \bar{L}_{qd\acute{e}p}$ sont dites strictement équivalentes s'il existe $f \in Aut_0(\bar{L}_{qd\acute{e}p})$ tel que $f(L_1) = L_2$. (Rappelons que $Aut_0(\bar{L}_{qd\acute{e}p})$ désigne la composante neutre du groupe des automorphismes de $\bar{L}_{qd\acute{e}p}$.)

Il est facile de voir que l'ensemble des classes d'équivalence strictes est en correspondance biunivoque avec l'ensemble de cohomologie $H^1\left(k,\operatorname{Aut}_0(\bar{L}_{\mathrm{qdép}})\right)$. Deux classes strictes correspondent à la même classe d'isomorphisme si et seulement si elles ont la même image par l'application canonique $H^1\left(k,\operatorname{Aut}_0(\bar{L}_{\mathrm{qdép}})\right) \to H^1\left(k,\operatorname{Aut}(\bar{L}_{\mathrm{qdép}})\right)$ induite par l'inclusion.

Soit Λ le réseau des poids de $\bar{L}_{qd\acute{e}p}$ et soit Λ_r le réseau des racines. Soit Λ_+ le monoïde des poids dominants. Comme $L_{qd\acute{e}p}$ est quasi-déployée, le groupe de Galois $\Gamma_k = \operatorname{Gal}(\bar{k}/k)$ préserve les racines positives et donc opère aussi sur Λ_+ .

Théorème 3.1 (Tits [25, Corollaire 3.5]). Pour toute k-sous-algèbre de Lie $L \subset \bar{L}_{qd\acute{e}p}$ avec $\bar{L} = \bar{L}_{qd\acute{e}p}$, il y a un homomorphisme

(5)
$$\beta_L: (\Lambda/\Lambda_r)^{\Gamma_k} \longrightarrow \operatorname{Br}(k),$$

ne dépendant que de la classe d'équivalence stricte de L, tel que pour tout poids dominant $\lambda \in \Lambda^{\Gamma_k}_+$, l'algèbre à division D déterminée par $\beta_L(\bar{\lambda}) \in \operatorname{Br}(k)$, où $\bar{\lambda}$ est l'image de λ par la projection canonique $\Lambda \to \Lambda/\Lambda_r$, est caractérisée par l'existence d'une représentation sur k

$$r: L \longrightarrow \mathfrak{gl}_m(D)$$

de poids dominant simple λ .

Nous allons rappeler ci-dessous la description cohomologique de l'homomorphisme β_L du théorème 3.1 d'après [25, Section 4].

Posons $G_{\rm qd\acute{e}p}={\rm Aut}_0(\bar{L}_{\rm qd\acute{e}p})$. Soit $\tilde{G}_{\rm qd\acute{e}p}$ le revêtement universel de $G_{\rm qd\acute{e}p}$ et soit $C_{\rm qd\acute{e}p}$ son centre. Nous identifions toujours le réseau des poids Λ de $L_{\rm qd\acute{e}p}$ au groupe des caractères d'un tore maximal de $\tilde{G}_{\rm qd\acute{e}p}$.

Soit $\lambda \in (\Lambda_+)^{\Gamma_k}$ et soit $R: \tilde{G}_{qd\acute{e}p} \to GL_n$ la représentation irréductible de poids λ , définie sur k. Considérons le diagramme commutatif associé où les lignes sont exactes:

L'application à ce diagramme du foncteur de cohomologie mène à un carré commutatif

(6)
$$H^{1}(k, G_{\text{qdép}}) \xrightarrow{\partial} H^{2}(k, C_{\text{qdép}})$$

$$R_{*} \downarrow \qquad \qquad \lambda_{*} \downarrow$$

$$H^{1}(k, \text{PGL}_{n}) \xrightarrow{\partial} H^{2}(k, \text{GL}_{1}) = \text{Br}(k).$$

où ∂ est l'opérateur de cobord [19, Appendix].

Définissons un élément $\beta_L(\lambda) \in \operatorname{Br}(k)$ en posant

(7)
$$\beta_L(\lambda) := \partial R_*(a_L).$$

où $a_L \in H^1(k, G_{\text{qdép}})$ est l'élément qui correspond à la classe stricte de L. Du fait de la commutativité du diagramme (6), l'élément $\beta_L(\lambda)$ peut aussi s'écrire sous la forme

(8)
$$\beta_L(\lambda) = \lambda_* \partial(a_L).$$

Il suit immédiatement de cette identité que la correspondance $\lambda \mapsto \beta_L(\lambda)$ définit un homomorphisme

(9)
$$\beta_L: \mathbf{X}(C_{\mathrm{adép}})^{\Gamma_k} \longrightarrow \mathrm{Br}(k).$$

où $\mathbf{X}(C_{\text{qdép}})$ est le groupe des caractères de $C_{\text{qdép}}$.

L'homomorphisme du théorème 3.1 s'obtient de (9) en remplaçant le groupe $\mathbf{X}(C_{\text{qdép}})$ par le groupe Λ/Λ_r qui lui est canoniquement isomorphe.

4. Un théorème de comparaison. Dans ce paragraphe, nous établirons une formule qui compare les déterminants et les invariants de Hasse-Witt de L et de $L_{\rm qdép}$, où $L_{\rm qdép}$ est l'algèbre quasi-déployée associée à L par la condition $[L_{\rm qdép}] = \pi_*[L]$, où π est comme au Lemme 2.1. Nous regardons toujours L comme une k-sous-algèbre de $\bar{L}_{\rm qdép}$.

Comme $G_{\rm qd\acute{e}p}={\rm Aut}_0(\bar{L}_{\rm qd\acute{e}p})$ préserve la forme de Killing, l'image de la représentation adjointe Ad: $G_{\rm qd\acute{e}p}\longrightarrow {\rm GL}(\bar{L}_{\rm qd\acute{e}p})$ est contenue dans le groupe orthogonal ${\rm O}(\bar{L}_{\rm qd\acute{e}p})$. Soit ${\rm Ad}_*\colon H^1(k,G_{\rm qd\acute{e}p})\longrightarrow H^1(k,{\rm O}(\bar{L}_{\rm qd\acute{e}p}))$ l'application induite. Nous vérifions facilement que la classe d'isométrie de Q_L est donnée par

$$Ad_*(a_L) \in H^1(k, O(\bar{L}_{qdép})),$$

où $a_L \in H^1(k, G_{\text{qdép}})$ correspond à la classe stricte de L (mais $Ad_*(a_L)$ ne dépend que de la classe d'isomorphisme de L au sens habituel, *i.e.*, non strict).

PROPOSITION 4.1. $d(L) = d(L_{qdép})$.

DÉMONSTRATION. Par la connexité de $G_{\rm qdép}$, le groupe ${\rm Ad}(G_{\rm qdép})$ est contenu dans ${\rm SO}(\bar{L}_{\rm qdép})$; donc det ${\rm Ad}_*(a_L)=1$. Il s'ensuit que $d(L)=d(L_{\rm qdép})$.

Soit Φ le système de racines associé à $L_{\rm qdép}$. Posons

$$\rho = \frac{1}{2} \sum_{\alpha > 0} \alpha,$$

où la somme s'étend à toutes les racines positives de Φ (par rapport à un choix de sous-algèbre de Borel de $L_{\rm qd\acute{e}p}$ définie sur k). Il est à noter que comme $L_{\rm qd\acute{e}p}$ est quasi-déployée, Γ_k ne fait que permuter les racines positives; il en résulte que ρ est invariant par Γ_k .

Le poids ρ intervient dans la formule classique de Weyl [2, Chap. 8, Section 9, Théorème 2] et la représentation qu'il détermine a été étudiée notamment par Kostant [11], [9], [10].

Théorème 4.2. Soient L une algèbre de Lie semi-simple sur k et $L_{qdép}$ une algèbre de Lie quasi-déployée du même type interne que L. Soit ρ le poids défini par (10). Alors

$$h(L) = h(L_{\text{qdép}}) + \beta_L(\rho).$$

DÉMONSTRATION. Soit $\widetilde{\mathrm{Ad}}$: $\widetilde{G}_{\mathrm{qdép}} \to \mathrm{Spin}(\overline{L}_{\mathrm{qdép}})$ le relèvement de l'application adjointe Ad : $G_{\mathrm{qdép}} \to \mathrm{SO}(\overline{L}_{\mathrm{qdép}})$.

Considérons le diagramme commutatif:

En appliquant le foncteur de cohomologie à ce diagramme, nous obtenons le carré commutatif

(11)
$$H^{1}(k, G_{\text{qdép}}) \xrightarrow{\partial} H^{2}(k, C_{\text{qdép}})$$

$$Ad_{*} \downarrow \qquad \qquad \widehat{Ad}_{*} \downarrow$$

$$H^{1}(k, \text{SO}(\overline{L}_{\text{qdép}})) \xrightarrow{\partial} H^{2}(k, \mathbb{Z}/2\mathbb{Z}),$$

où ∂ est l'opérateur de cobord. Par le théorème de Springer [23, formule 4.7], nous avons la formule

$$h(L) = h(L_{\text{qdép}}) + \partial \operatorname{Ad}_*(a_L),$$

que nous exprimons, en utilisant la commutativité du diagramme (11), sous la forme

(12)
$$h(L) = h(L_{\text{odép}}) + \widetilde{\text{Ad}}_* \partial (a_L).$$

Nous allons déterminer explicitement l'homomorphisme Ad_* : $H^2(k, C_{\mathrm{qdép}}) \to H^2(k, \mathbb{Z}/2\mathbb{Z})$; pour cela nous aurons besoin du résultat ci-dessous, dû à Kostant.

Théorème 4.3 (Kostant [9], [11]). Soit σ : Spin($\bar{L}_{qd\acute{e}p}$) \rightarrow GL(S) la représentation spinorielle 1 de Spin($\bar{L}_{qd\acute{e}p}$). Alors la représentation de $\tilde{G}_{qd\acute{e}p}$ donnée par la composition

$$\widetilde{G}_{\text{qdép}} \xrightarrow{\widetilde{\text{Ad}}} \text{Spin}(\overline{L}_{\text{qdép}}) \xrightarrow{\sigma} \text{GL}(S)$$

est primaire en la représentation irréductible de $\tilde{G}_{qd\acute{e}p}$ de poids dominant ho.

COROLLAIRE 4.4. Pour
$$c \in C_{\text{qdép}}$$
 nous avons $\overrightarrow{Ad}(c) = \rho(c)$.

¹ Voir [6, Lecture 20] ou [3, Chap. IV, 6] pour une définition sur C, ou [2, Chap. VIII, Section 13, No 2].

DÉMONSTRATION. Il suit de la construction de S (voir [6, Lecture 20]) que l'algèbre de Clifford paire $C_0(\bar{L}_{qd\acute{e}p})$ en tant que $Spin(\bar{L}_{qd\acute{e}p})$ -module par multiplication à gauche est une somme de copies de S. En particulier, par le théorème 4.3, ρ est un poids de $C_0(\bar{L}_{qd\acute{e}p})$ en tant que $\tilde{G}_{qd\acute{e}p}$ -module via \widetilde{Ad} .

Soit c un élément du centre $C_{\text{qdép}}$. Nous avons d'une part que $\widetilde{\mathrm{Ad}}(c)$ est un opérateur scalaire (en fait ± 1) et d'autre part nous savons que $\widetilde{\mathrm{Ad}}(c)$ admet $\rho(c)$ comme valeur propre, du fait que $C_{\text{qdép}}$ est contenu dans le tore maximal de $\widetilde{G}_{\text{qdép}}$. Donc $\widetilde{\mathrm{Ad}}(c) = \rho(c)$.

FIN DE LA DÉMONSTRATION DU THÉORÈME 4.2. Par le corollaire 4.4 nous avons $\widetilde{\mathrm{Ad}}_*\partial(a_g)=\rho_*\partial(a_L)=\beta_L(\rho)$, la dernière égalité résultant de (8). Nous terminons la démonstration du théorème 4.2 en combinant cette égalité avec (12).

EXEMPLE 1. Soit A une algèbre centrale simple sur k et soit $L = \{x \in A : \operatorname{tr}(x) = 0\}$. Alors $L_{\operatorname{qdép}} = \mathfrak{Sl}_n(k)$, où n est l'indice de A sur k. Dans cet exemple nous avons $\operatorname{Aut}_0(\bar{L}_{\operatorname{qdép}}) = \operatorname{PSL}_n$ et nous vérifions facilement que si $a_L \in H^1(k,\operatorname{PSL}_n)$ est l'élément qui correspond à la classe stricte de L, alors $\partial a_L \in H^2(k,\mathbf{\mu}_n) = \operatorname{Br}_n(k)$ coïncide avec la classe [A] de A dans le groupe de Brauer.

Soit $H \subset \mathfrak{Sl}_n(k)$ la sous-algèbre de Cartan des matrices diagonales et soit ε_i : $H \to k$ la forme linéaire donnée par $\varepsilon_i \left(\operatorname{diag}(h_1, \ldots, h_n) \right) = h_i \ (i = 1, \ldots, n-1)$. Il est bien connu (voir par exemple [14, p. 294]) que le poids ρ de (10) s'exprime sous la forme

$$\rho = (n-1)\varepsilon_1 + (n-2)\varepsilon_2 + \cdots + \varepsilon_{n-1}.$$

Nous avons ici $\tilde{G}_{qd\acute{e}p} = SL_n$, donc le centre $C_{qd\acute{e}p}$ est composé de matrices scalaires de la forme $\Xi = \xi I$ où $\xi^n = 1$. En regardant maintenant ρ comme un caractère multiplicatif du sous-groupe des matrices diagonales de SL_n , nous avons

(13)
$$\rho(\Xi) = \xi^{n-1} \xi^{n-2} \cdots \xi^1 \\ = \xi^{n(n-1)/2}.$$

Par conséquent, l'application ρ_* : $H^2(k, C_{\text{qdép}}) = \operatorname{Br}_n(k) \to H^2(k, \mathbb{Z}/2\mathbb{Z}) = \operatorname{Br}_2(k)$ est donnée, en notation additive, par $\rho_*(x) = \frac{n(n-1)}{2}x$. Il s'ensuit que dans cet exemple l'invariant de Tits est

$$\beta_L(\rho) = \rho_* \partial (a_L)$$
$$= \frac{n(n-1)}{2} [A].$$

Finalement, nous avons par le théorème 4.2:

(14)
$$h(L) = h(\mathfrak{Sl}_n) + \frac{n(n-1)}{2}[A].$$

Du fait de l'identité $Q_L(x) = 2n \cdot \operatorname{tr}_{A/k}(x^2)$, facile à vérifier, la formule (14) est essentiellement équivalente à la formule pour l'invariant de Hasse-Witt de la forme trace d'une algèbre à division [21], [24], [13].

1330 JORGE MORALES

EXEMPLE 2. Soit $E = k[t]/(t^2 - a)$, où $a \in k^\times$ est un élément fixé une fois pour toutes. Nous noterons par $\iota : E \to E$ l'automorphisme non trivial de E et par χ le caractère de E/k, c'est-à-dire l'homomorphisme $\chi : \Gamma_k \to \mathbb{Z}/2\mathbb{Z}$ donné par $\gamma(\sqrt{a})/\sqrt{a} = (-1)^{\chi(\gamma)}$ pour $\gamma \in \Gamma_k$.

Soit A une algèbre semi-simple de dimension $2n^2$ sur k de centre E et munie d'une involution E-sesquilinéaire (i.e., coïncidant avec ι sur E) σ : $A \rightarrow A$.

Dans [16], Anne Quéguiner a étudié la forme quadratique $T(x) = \frac{1}{2} \operatorname{tr}_{A/k} (x\sigma(x))$ sur A et ses restrictions T^+ et T^- aux sous-espaces propres de l'involution A^+ et A^- . Elle a montré en particulier que l'invariant de Hasse-Witt $h(T^+)$ est déterminé par la *classe discriminante* de (A, σ) (voir [16, Section 3]). Dans cet exemple, nous nous proposons de retrouver ce résultat à partir du théorème 4.2.

Posons

(15)
$$L = \left\{ x \in A : x + \sigma(x) = 0 \text{ et } \operatorname{tr}_{A/k}(tx) = 0 \right\}.$$

On vérifie facilement que L est une algèbre de Lie pour l'opération [x, y] = xy - yx et qu'elle est isomorphe à \mathfrak{Fl}_n sur la clôture algébrique \bar{k} .

La forme trace $T(x) = \frac{1}{2} \operatorname{tr}_{A/k} (x\sigma(x))$ restreinte à L et la forme de Killing Q_L satisfont la relation

$$Q_L(x) = -2nT^-(x)$$
 pour $x \in L$.

Nous déduisons de cette relation et de la décomposition orthogonale $A^-=kt\oplus L$ que $T^-\simeq \langle -na\rangle \perp \langle -2n\rangle Q_L$. D'autre part, nous savons aussi que $T^+\simeq -aT^-$; donc

$$(16) T^+ \simeq \langle n \rangle \perp \langle 2na \rangle Q_L.$$

Il s'ensuit que les invariants de Q_L peuvent facilement être déduits de ceux de T^+ et réciproquement.

Soit $P=(p_{ij})$ la matrice $n\times n$ définie par $p_{ij}=\delta_{i,n+1-j}$. Considérons l'algèbre à involution $(M_n(E),\tau)$ où τ est donné par

$$\tau(x) = P^{-1}\iota(x)^t P.$$

L'algèbre de Lie associée à $(M_n(E), \tau)$ est l'algèbre de la forme hermitienne sur E de matrice P:

$$L_0 := \{ x \in M_n(E) : Px + \iota(x)^t P = 0 \text{ et } Tr(tx) = 0 \}.$$

Cette algèbre est quasi-déployée sur k. En effet, nous pouvons regarder L_0 comme la forme tordue de \mathfrak{Sl}_n par le 1-cocycle φ donné par

$$\varphi: \gamma \longmapsto u^{\chi(\gamma)} \in \operatorname{Aut}(\mathfrak{Sl}_n).$$

où u est l'automorphisme de \mathfrak{Sl}_n défini par $u(x) = -Px^tP^{-1}$. Or, cet automorphisme préserve la sous-algèbre de Borel de \mathfrak{Sl}_n formée des matrices triangulaires supérieures, donc elle est aussi préservée par l'action de Γ_k tordue par φ . Il en résulte que L_0 est quasi-déployée (d'où le choix de P).

En identifiant $\operatorname{Aut}(\operatorname{SL}_n)$ avec $\operatorname{Aut}(\operatorname{\mathfrak{Sl}}_n)$ par différentiation, nous désignerons aussi par u l'élément de $\operatorname{Aut}(\operatorname{SL}_n)$ donné par $x \mapsto P(x^t)^{-1}P^{-1}$ et par φ le cocycle correspondant à valeurs dans $\operatorname{Aut}(\operatorname{SL}_n)$. Nous noterons par φ SL_n et φ PSL_n les groupes obtenus en tordant SL_n et PSL_n respectivement par φ .

Dans [16, 3.1], A. Quéguiner montre qu'il y a une suite exacte de groupes algébriques sur *k*

$$1 \longrightarrow_{\varphi} \operatorname{PSL}_n \xrightarrow{i} \operatorname{Aut}(\overline{M_n(E)}, \tau) \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 1.$$

Les algèbres à involution de deuxième espèce (A, σ) de centre E et de dimension $2n^2$ sur k sont classifiées par l'image de l'application i_* : $H^1(k, \varphi \operatorname{PSL}_n) \to H^1(k, \operatorname{Aut}\left(M_n(E)\right)$, ou, ce qui revient au même, par l'ensemble quotient

(17)
$$H^{1}(k,_{\varphi} \operatorname{PSL}_{n})/(\mathbb{Z}/2\mathbb{Z})$$

où le générateur de $\mathbb{Z}/2\mathbb{Z}$ opère sur φ PSL_n par u. Or, l'ensemble (17) classifie aussi les algèbres de Lie sur k du type interne de $L_0 = \varphi \, \mathfrak{Fl}_n$ et il est facile de voir que la bijection est donnée par la correspondance $(A, \sigma) \longmapsto L$ où L est définie par (15).

L'opérateur de cobord associé à la suite exacte

$$1 \longrightarrow_{\varphi} \mathbf{\mu}_n \longrightarrow_{\varphi} \mathrm{SL}_n \longrightarrow_{\varphi} \mathrm{PSL}_n \longrightarrow 1$$

induit une application

$$\partial: H^1(k, \mathcal{P}SL_n)/(\mathbb{Z}/2\mathbb{Z}) \longrightarrow H^2(k, \mathcal{\mu}_n)/(\mathbb{Z}/2\mathbb{Z}).$$

Nous notons $[A, \sigma]$ l'élément de $H^1(k, \varphi \operatorname{PSL}_n)/(\mathbb{Z}/2\mathbb{Z})$ qui correspond à (A, σ) . La *classe discriminante* de (A, σ) est définie par

(18)
$$\mathfrak{D}(A,\sigma) = \partial [A,\sigma] \in H^2(k,_{\varphi} \mathbf{\mu}_n) / (\mathbb{Z}/2\mathbb{Z}).$$

(voir [16, 3.5.2]).

Soit ρ le poids défini en (10). Par (6) et (8) avec $G_{\text{qdép}} = \varphi \operatorname{PSL}_n$ (donc $C_{\text{qdép}} = \varphi \boldsymbol{\mu}_n$) et $\lambda = \rho$, nous avons que l'invariant de Tits $\beta_L(\rho)$ est donné par

(19)
$$\beta_L(\rho) = \rho_* \mathfrak{D}(A, \sigma).$$

Donc, par le théorème 4.2 et (19), nous avons

(20)
$$h(L) = h(L_0) + \rho_* \mathfrak{D}(A, \sigma).$$

Nous remarquons qu'en vertu de (13) l'application ρ_* : $\varphi \mathbf{\mu}_n \to \mathrm{GL}_1$ induite par ρ est donnée par $\rho_*(\xi) = \xi^{n(n-1)/2}$. Donc, compte tenue de la relation (16), l'égalité (20) est essentiellement équivalente à [16, Theorem 2].

Le terme $h(L_0)$ de (20) peut être déterminé explicitement par calcul élémentaire direct (par (23) ci-dessous, il suffit de calculer la restriction de Q_{L_0} à une sous-algèbre de Cartan), ou on peut aussi utiliser les formules générales du paragraphe 5 (corollaire 5.3) pour les algèbres quasi-déployées.

5. Le cas des algèbres quasi-déployées. Soit $L_{\text{dép}}$ une algèbre semi-simple sur k déployée par une sous-algèbre de Cartan $H_{\text{dép}} \subset L_{\text{dép}}$ fixée une fois pour toutes. Soit Φ le système de racines associé à la paire $(L_{\text{dép}}, H_{\text{dép}})$.

Soit Σ le groupe des symétries du diagramme de Dynkin de Φ . Nous rappelons que Σ s'identifie au sous-groupe de $\operatorname{Aut}(\bar{L}_{\text{dép}})$ qui préserve un épinglage de $(L_{\text{dép}}, H_{\text{dép}})$ [2, Chap. VIII, Section 5, No 3, corollaire 1].

Soit $L_{\mathrm{qdép}}$ une algèbre quasi-déployée donnée par un homomorphisme $\varphi \colon \Gamma_k \to \Sigma$. Pour $\alpha \in \Phi$, soit $\bar{L}_{\mathrm{dép}}^{\alpha}$ le sous-espace primaire de $\bar{L}_{\mathrm{dép}}$ relatif à α . Posons $\bar{N}_{\mathrm{dép}}^+ = \oplus_{\alpha > 0} \bar{L}_{\mathrm{dép}}^{\alpha}$ et $\bar{N}_{\mathrm{dép}}^- = \oplus_{\alpha > 0} \bar{L}_{\mathrm{dép}}^{-\alpha}$, où l'on somme sur l'ensemble des racines positives.

Il est bien connu ([18, Chap. IV] ou [2, Chap. VIII, Section 2, No 2]) que $\bar{L}_{\text{dép}}$ se décompose en somme directe

(21)
$$\bar{L}_{\text{dép}} = \overline{H}_{\text{dép}} \oplus (\bar{N}_{\text{dép}}^+ \oplus \bar{N}_{\text{dép}}^-).$$

Nous considérons l'action de Γ_k sur $\bar{L}_{\text{dép}}$ tordue par φ , c'est-à-dire, donnée par la formule $\gamma * x = \varphi(\gamma)\gamma(x)$ pour $\gamma \in \Gamma_k$ et $x \in \bar{L}_{\text{dép}}$. Comme Σ permute les racines positives, l'action * préserve les sous-espaces $\bar{N}_{\text{dép}}^+$, $\bar{N}_{\text{dép}}^-$ et $\overline{H}_{\text{dép}}$; donc en prenant les points fixes de l'action * en (21) nous obtenons une décomposition sur k de l'algèbre quasi-déployée $L_{\text{qdép}}$

(22)
$$L_{\text{qdép}} = H_{\text{qdép}} \oplus (N_{\text{qdép}}^+ \oplus N_{\text{qdép}}^-).$$

Il est bien connu que la forme de Killing met en dualité $N_{\rm qd\acute{e}p}^+$ et $N_{\rm qd\acute{e}p}^-$, par conséquent la restriction de $Q_{L_{\rm qd\acute{e}p}}$ à $N_{\rm qd\acute{e}p}^+ \oplus N_{\rm qd\acute{e}p}^-$ est une forme hyperbolique; donc

(23)
$$Q_{L_{\text{qdép}}} = Q_{H_{\text{qdép}}} \perp \text{ (forme hyperbolique)},$$

où $Q_{H_{
m qdép}}$ est la restriction de $Q_{L_{
m qdép}}$ à la sous-algèbre de Cartan $H_{
m qdép}$.

En vertu de (23), il suffit d'étudier la forme $Q_{H_{qdép}}$. Nous remarquons que la classe d'isométrie de cette forme est déterminée par le 1-cocycle

$$\Gamma_k \stackrel{\varphi}{\longrightarrow} \Sigma \longrightarrow O(\overline{H}_{\text{dép}}).$$

Pour $\sigma \in \Sigma$ nous noterons $\varepsilon(\sigma)$ la signature de σ en tant que permutation des racines simples et nous l'écrirons additivement.

Nous rappelons que pour $a \in k^{\times}/k^{\times 2}$, le symbole [a] désigne l'image de a par l'isomorphisme canonique $k^{\times}/k^{\times 2} = H^1(k, \mathbb{Z}/2\mathbb{Z})$.

PROPOSITION 5.1. Avec ces notations, nous avons

(24)
$$\left[d(H_{\text{qdép}}) \right] = \left[d(H_{\text{dép}}) \right] + \varepsilon_*(\varphi).$$

DÉMONSTRATION. Comme la forme $Q_{H_{\text{qdép}}}$ est déterminée par la classe de φ dans $H^1(k, O(\overline{H}_{\text{dép}}))$, nous avons

$$[d(H_{\text{qdép}})] = [d(H_{\text{dép}})] + \det \varphi.$$

D'autre part, en prenant comme base de $H_{\text{dép}}$ la base duale de la base de $H_{\text{dép}}^*$ formée de racines simples, on voit aisément que det $\varphi = \varepsilon_*(\varphi)$; d'où la proposition.

Soit p: $\operatorname{Pin}(\overline{H}_{\operatorname{dép}}) \to \operatorname{O}(\overline{H}_{\operatorname{dép}})$ la projection canonique et soit $\tilde{\Sigma} = p^{-1}(\Sigma)$. Comme l'action de Γ_k sur Σ est triviale, Γ_k opère sur les fibres de p au dessus de Σ . Soit $s: \Sigma \to \tilde{\Sigma}$ une section ensembliste pour p. Pour $\sigma \in \Sigma$ et $\gamma \in \Gamma_k$ définissons le symbole $\{\sigma, \gamma\} \in \mathbb{Z}/2\mathbb{Z}$ par la relation

$$\gamma(s(\sigma)) = (-1)^{\{\gamma,\sigma\}} s(\sigma).$$

Nous vérifions aussitôt que $\{\sigma,\gamma\}$ ne dépend pas du choix de la section s et qu'il définit un bihomomorphisme $\{\ ,\ \}$: $\Gamma_k \times \Sigma \longrightarrow \mathbb{Z}/2\mathbb{Z}$. En composant avec φ : $\Gamma_k \longrightarrow \Sigma$ sur le deuxième argument, nous obtenons un 2-cocycle

(25)
$$\Gamma_k \times \Gamma_k \longrightarrow \mathbb{Z}/2\mathbb{Z}$$

$$(\gamma_1, \gamma_2) \longmapsto \{\gamma_1, \varphi(\gamma_2)\},$$

dont la classe dans $H^2(k, \mathbb{Z}/2\mathbb{Z})$ sera notée c_{φ} .

Soit $S \in H^2(\Sigma, \mathbb{Z}/2\mathbb{Z})$ l'élément déterminé par l'extension $0 \to \mathbb{Z}/2\mathbb{Z} \to \tilde{\Sigma} \to \Sigma \to 1$.

THÉORÈME 5.2. Avec les notations ci-dessus nous avons

(26)
$$h(H_{\text{qdép}}) = h(H_{\text{dép}}) + \varphi^* S + c_{\varphi} + \varepsilon_*(\varphi) \cdot \left[d(H_{\text{dép}}) \right],$$

où · est le cup-produit

DÉMONSTRATION. Soit $\partial: H^1(k, O(\overline{H}_{dép})) \to H^2(k, \mathbb{Z}/2\mathbb{Z})$ l'opérateur de cobord associé à la suite exacte

$$0 \to \mathbb{Z}/2\mathbb{Z} \to \operatorname{Pin}(\overline{H}_{\operatorname{dép}}) \to \operatorname{O}(\overline{H}_{\operatorname{dép}}) \to 1.$$

D'une part, la formule de Springer [23, formule 4.7] nous donne l'égalité

(27)
$$h(H_{\text{qdép}}) = h(H_{\text{dép}}) + \partial(\varphi) + \left[-d(H_{\text{qdép}}) \right] \cdot \left[d(H_{\text{dép}}) \right],$$

et d'autre part nous calculons explicitement un 2-cocycle u représentant $\partial(\varphi)$ à l'aide d'une section ensembliste $s: \Sigma \to \tilde{\Sigma}$:

(28)
$$u(\gamma_1, \gamma_2) = s(\varphi(\gamma_1 \gamma_2))^{-1} s(\varphi(\gamma_1)) \gamma_1 (s(\varphi(\gamma_2)))$$
$$= s(\varphi(\gamma_1 \gamma_2))^{-1} s(\varphi(\gamma_1)) s(\varphi(\gamma_2)) (-1)^{\{\gamma_1, \varphi(\gamma_2)\}}.$$

Nous remarquons que le 2-cocycle $(\gamma_1, \gamma_2) \mapsto s(\varphi(\gamma_1 \gamma_2))^{-1} s(\varphi(\gamma_1)) s(\varphi(\gamma_2))$ qui apparaît en (28) représente $\varphi^* S$; donc, en notation additive, nous avons

$$\partial(\varphi) = \varphi^* S + c_{\varphi}$$
.

La formule annoncée s'obtient en combinant cette égalité avec (27) et (24).

COROLLAIRE 5.3. Soit 2r le nombre de racines. Alors

$$h(L_{\text{qdép}}) = h(L_{\text{dép}}) + \varphi^* S + c_{\varphi} + \left[(-1)^r d(H_{\text{dép}}) \right] \cdot \varepsilon_*(\varphi),$$

où · est le cup-produit.

1334 JORGE MORALES

DÉMONSTRATION. Nous avons vu que $Q_{L_{\text{dép}}}$ et $Q_{L_{\text{qdép}}}$ se décomposent en somme orthogonale de leur restriction à une sous-algèbre de Cartan et de la forme hyperbolique de rang 2r. Donc

$$h(L_{\text{dép}}) = h(H_{\text{dép}}) + \frac{r(r-1)}{2}[-1] \cdot [-1] + r[-1] \cdot \left[d(H_{\text{dép}})\right]$$

$$h(L_{\text{qdép}}) = h(H_{\text{qdép}}) + \frac{r(r-1)}{2}[-1] \cdot [-1] + r[-1] \cdot [d(H_{\text{qdép}})].$$

En additionnant ces deux égalités nous obtenons

$$\begin{split} h(L_{\text{dép}}) + h(L_{\text{qdép}}) &= h(H_{\text{dép}}) + h(H_{\text{qdép}}) + r[-1] \cdot \left[d(H_{\text{dép}}) d(H_{\text{qdép}}) \right] \\ &= h(H_{\text{dép}}) + h(H_{\text{qdép}}) + r[-1] \cdot \varepsilon_*(\varphi) \\ &= \varepsilon_*(\varphi) \cdot \left[d(H_{\text{dép}}) \right] + \varphi^* S + c_\varphi + r[-1] \cdot \varepsilon_*(\varphi), \end{split}$$

où la deuxième égalité est une conséquence de (24) et la troisième de (26).

EXEMPLE 3. Soit $L_{\text{dép}} = \mathfrak{Fl}_2(k) \times \mathfrak{Fl}_2(k) \times \cdots \times \mathfrak{Fl}_2(k)$ (n fois). Dans cet exemple nous voyons facilement que $\Sigma = \mathfrak{S}_n$, le groupe symétrique en n lettres. En tant que groupe d'automorphismes, Σ agit sur $L_{\text{dép}}$ en permutant les facteurs $\mathfrak{Fl}_2(k)$.

Soit $\varphi \colon \Gamma_k \longrightarrow \Sigma$ un homomorphisme et soit $L_{\mathrm{qd\acute{e}p}}$ l'algèbre quasi-déployée déterminée par φ .

Nous allons calculer tous les termes de la formule du théorème 5.2. On voit aisément que $Q_{H_{\text{dép}}} \simeq \langle 2, 2, \dots, 2 \rangle$, donc $d(H_{\text{dép}}) = 2^n$ et $h(H_{\text{dép}}) = \frac{n(n-1)}{2}[2] \cdot [2] = 0$. Un calcul facile montre que $\tilde{\Sigma}$ est rationnel sur k; donc le cocycle (25) est trivial, c'est-à-dire, $c_{\varphi} = 0$. L'invariant S coïncide dans cet exemple avec la classe canonique $s_n \in H^2(\mathfrak{S}_n, \mathbb{Z}/2\mathbb{Z})$ définie en [20, 1.5]. Donc, la formule du théorème 5.2 devient:

(29)
$$h(H_{\text{qdép}}) = n[2] \cdot \varepsilon_*(\varphi) + \varphi^*(s_n).$$

La formule (29) est en fait équivalente à la formule de Serre pour la forme trace des algèbres étales [20, Théorème 1]. En effet, soit E l'algèbre étale déterminée par φ . La relation entre la forme trace de E et la forme de Killing sur $H_{\rm qdép}$ est donnée par l'identité $Q_{H_{\rm qdép}}=2\,{\rm Tr}_{E/k}(X^2)$, vérifiée facilement par calcul direct. Donc

(30)
$$h(\operatorname{Tr}_{E/k}(X^2)) = h(H_{\operatorname{qdép}}) + (n-1)[2] \cdot [d_{E/k}],$$

où $d_{E/k}$ est le discriminant de E/k (voir [12, Formule 3.16]). Clairement $[d_{E/k}] = \varepsilon_*(\varphi)$; donc, en combinant les formules (29) et (30), nous retrouvons la formule de Serre [20]:

$$h(\operatorname{Tr}_{E/k}(X^2)) = [2] \cdot [d_{E/k}] + \varphi^*(s_n).$$

REMARQUES.

1. Soient $\alpha_1, \alpha_2, \ldots, \alpha_n$ les racines simples de Φ . Le groupe Σ agit en permutant ces racines; nous avons donc un plongement de Σ dans le groupe symétrique \mathfrak{S}_n , unique à conjugaison près. L'homomorphisme composé

$$\Gamma_k \stackrel{\varphi}{\longrightarrow} \Sigma \longrightarrow \mathfrak{S}_n$$

définit une algèbre étale E/k. L'invariant $\varepsilon_*(\varphi)$ du théorème 5.2 n'est autre que le discriminant de E/k.

2. Si $\varphi(\Gamma_k)$ est contenu dans le groupe alterné \mathfrak{U}_n , alors la formule du corollaire 5.3 prend la forme simplifiée

$$h(L_{\text{qdép}}) = h(L_{\text{dép}}) + \varphi^* S + c_{\varphi}.$$

3. En combinant le théorème 4.2 et le corollaire 5.3 nous obtenons une formule pour h(L) d'une algèbre de Lie semi-simple quelconque L en termes d'invariants de l'algèbre déployée $L_{\rm dép}$ de même système de racines. Pour $L_{\rm dép}$, les invariants $d(L_{\rm dép})$ et $h(L_{\rm dép})$ sont faciles à calculer en pratique utilisant la base canonique dite «de Weyl» (voir [18, Chap. 6, Section 4]).

REFERENCES

- 1. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 1, 2 et 3. Hermann, 1972.
- 2. _____, Groupes et algèbres de Lie, Chapitres 7 et 8. Hermann, 1975.
- 3. T. Bröcker and T. tom Dieck, Representations of compact groups. Springer-Verlag, 1985.
- **4.** R. Brusamarello and J. Morales, *On the second Stiefel-Whitney class of scaled trace forms of central simple algebras.* Preprint, 1997.
- A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants. J. Reine Angew. Math. 360(1985), 84–123.
- 6. W. Fulton and J. Harris, Representation theory. Springer-Verlag, 1991.
- V. P. Gallagher, The Cartan-Killing form on simple p-adic Lie algebras. Ph.D. thesis, University of Notre Dame, 1975.
- B. Kahn, Classes de Stiefel-Whitney de formes quadratiques et de représentations galoisiennes réelles. Invent. Math. 78(1984), 223–256.
- B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of. Math. (2) 74(1961), 329–387.
- Flag manifold quantum cohomology, the Toda lattice, and the representation with highest weight
 ρ. Selecta Math. New Ser. 2(1996), 43–91.
- 11. _____, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the ρ -decomposition $C(\mathfrak{g}) = \operatorname{End} V_{\rho} \otimes C(P)$, and the \mathfrak{g} -module structure of $\wedge \mathfrak{g}$. Adv. Math. 125(1997), 275–350.
- 12. T. Y. Lam, The algebraic theory of quadratic forms. W. A. Benjamin, 1973.
- D. W. Lewis and J. F. Morales, The Hasse invariant of the trace form of a central simple algebra. Publ. Math. Fac. Sci. Besancon, Théorie des nombres 92/93-93/94, 1994.
- 14. O. L. Onishchick and E. B. Vinberg, Lie groups and algebraic groups. Springer-Verlag, 1990.
- 15. A. Quéguiner, *Invariants d'algèbres à involution*. Ph.D. thesis, Université de Franche-Comté, Besançon, 1996
- **16.** ______, Cohomological invariants of algebras with involution. J. Algebra (1997), 299–330.
- 17. W. Scharlau, Quadratic and hermitian forms. Grundlehren Math. Wiss. 270, Springer-Verlag, 1985.
- 18. J.-P. Serre, Algèbres de Lie semi-simples complexes. Benjamin, 1966.
- 19. _____, Local fields. Graduate Texts in Math. 67, Springer-Verlag, Berlin-New York, 1979.
- **20.** _____, L'invariant de Witt de la forme $Tr(x^2)$. Comment. Math. Helv. **59**(1984), 651–676.
- 21. _____, Cohomologie galoisienne. 5e édition, Lecture Notes in Mathematics 5, Springer Verlag, 1994.

- 22. V. Snaith, Stiefel-Whitney classes of a symmetric bilinear form—a formula of Serre. Can. Math. Bull. (2) 28(1985), 218–222.
- 23. T. A. Springer, On the equivalence of quadratic forms. Proc. Neder. Acad. Sci. 62(1959), 241–253.
- **24.** J.-P. Tignol, La norme des espaces quadratiques et la forme trace des algèbres simples centrales. Publ. Math. Fac. Sci. Besançon, Théorie des nombres **92/93-93/94**, 1994.
- 25. J. Tits, Répresentations linéaires irréductibles d'un groupe réductif sur un corps quelconque. J. Reine Angew. Math 247(1971), 198–220.

Louisiana State University Department of Mathematics Bâton Rouge, LA 70803 USA

email: morales@math.lsu.edu