SOLUTIONS

<u>P 121</u>. We will say of two sets A, B in a topological space, that B is "peripheral" to A, if:

- (a) the closure of A contains B, and
- (b) the closure of B has no points in common with A.

It is easily seen that this relation is transitive. Find, in a Hausdorff space, a collection of sets which is linearly ordered by "peripheral" and has the order-type of the reals.

M. Shimrat, York University

Solution by C.J. Knight, The University of Sheffield

The problem posed asks for a collection of subsets of a Hausdorff space, ordered by 'B is peripheral to A' in the order type of the reals. In fact, such a collection can be exhibited in any given partial ordering.

We recall that B is said to be peripheral to A if $B \subseteq \overline{A}$ and $\overline{B} \cap A = \emptyset$. This relation is clearly transitive, and, provided we exclude the empty set, irreflexive.

THEOREM Let < be a transitive irreflexive relation on the set E. Then there exists a compact Hausdorff space X and a family $\{A_t \mid t \in E\}$ of distinct subsets of X, such that A_t is peripheral to A_r if and only if t < r.

<u>Proof:</u> Let X be the Cartesian product of copies of [0,1], one for each member e of E. We write the members of X as functions, so that if $x \in X$ then $x(e) \in [0,1]$ for each e in E. If a and b are members of E, we write $a \le b$ when either a < b or a = b.

For each t in E, let $A_t = \{x \in X \mid x(e) < 1 \text{ if } e \leqslant t,$ and $x(e) = 1 \text{ otherwise} \}$.

Distinct elements t give distinct sets A_t . For, if $t \neq t_1$ then one at least of $t \leqslant t_1$ and $t_1 \leqslant t$ is false.

Suppose that $t \le t_1$ is false, and let $z(e) = \frac{1}{2}$ if $e \le t_1$ and z(e) = 1 otherwise; then $z \in A_{t_1} \setminus A_{t_1}$.

Clearly,

$$\overline{A}_{t} = \{x \in X \mid x(e) = 1 \text{ whenever it is false that } e \leq t \}$$
.

Suppose now that t < r, that $x \in A_t$ and that it is false that $e \le r$. Then it is certainly false that $e \le t$, so we have x(e) = 1, and so $x \in \overline{A}_r$.

Thus $A_t \subseteq \overline{A}_r$. Moreover, if $y \in \overline{A}_t$, then y(r) = 1, and if $y \in A_r$ then y(r) < 1, and thus $\overline{A}_t \cap A_r = \phi$. So we have proved that if t < r then A_t is peripheral to A_r .

Suppose, on the other hand, that A_t is peripheral to A_r , and let $w(e) = \frac{1}{2}$ whenever $e \le t$, and w(e) = 1 otherwise. Then $w \in A_t$, and hence $w \in \overline{A_r}$. However, since $w(t) \ne 1$, this implies that $t \le r$. But t and r cannot be equal, since then A_t could not be peripheral to A_r . Thus t < r. This completes the proof of the theorem.

The space X constructed is not metrizable unless E is countable. This fact suggests the following problem:

Which partial order-types can be realised by the relation B' is peripheral to A' between some of the subsets of a metric space? In particular, is the order-type of R realisable in this way?

Also solved by A.C. Thompson, J. Washenberger, and the proposer.

P 122. Suppose G is a topological group, K a compact set and V a neighbourhood of the identity in G. Is there a positive integer N depending on K and V such that K contains no more than N non overlapping translates of V?

J.B. Wilker, University of Toronto

Solution by M. Edelstein, Dalhousie University

Let U be an open neighbourhood of the identity with $U^{-1} = U$ and $UU \subset V$. If $y \in G$ and x, $z \in y$ U then $z \in x$ V. Hence if $\{y_i \ U: i = 1, 2, ..., M\}$ covers K each translate xV, $x \in K$, must contain some y_i U. Thus we can take N = M.

Also solved by H.B. Secord, J.E. Marsden, R. Iltis and the proposer. $\ensuremath{\mathsf{R}}$

 \underline{P} 123. Let u^1 , u^2 , ... be sequences, $u^i = \{u^i_n\}$, such that, for each i, $\sum_n \left|u^i_n\right|^p < \infty$ if and only if p > 1.

(Example:
$$\{\frac{1}{n}\}$$
, $\{\frac{1}{n \log n}\}$, $\{\frac{1}{n \log n \log \log n}\}$;...).

Show that there exists a sequence x such that $\sum_{n=1}^{\infty} x_n u_n^i$ is convergent for each i, and $x_n \to 0$, but $\sum_{n=1}^{\infty} |x_n|^p = \infty$ for all $p \ge 1$.

A. Wilansky, Lehigh University

Solution by B. L.D. Thorp, York University

For each positive integer m let

$$S_{m} = \{y = \{y_{n}\} : \sum_{n} u_{n}^{m} y_{n} \text{ converges} \}.$$

Then, for each m, S_m is an FK space [1; Lemma 1, p.227] and $\ell^p \subset S_m$ (p = 1,2,...). The set $S = c_0 \cap \bigcap_{m=1}^{\infty} S_m$ is an FK space [1; Theorem 3, p.205] and $\bigcup_{n \in W} \ell^n \subset S$. Since $\bigcup_{n \in W} \ell^n$ is not an FK space [1; Cor. 6, p.205], $S \setminus \bigcup_{n \in W} \ell^n$

is non-empty and any element of this set satisfies the required condition.

REFERENCE

1. A. Wilansky, Functional Analysis, Blaisdell (1964).

Also solved by the proposer.