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Internal gravity wave fields are decomposed into temporal modes revealing the hierarchical
structure of nonlinear wave–wave interactions. We present a novel fusion of Green’s
functions for solving the forced internal wave equation with a weakly nonlinear
perturbation expansion. Our approach is semi-analytical, based on integration over finite
elements with the perturbation expansion ensuring source terms at each order are only
dependent on the solutions at lower orders. Thus, the procedure is purely inductive
and efficient to compute. To perform a thorough validation of our new method, we
diagnose experiments using synthetic Schlieren and apply sophisticated post-processing
techniques, including dynamic mode decomposition, to obtain these temporal modes
for systems with discrete input frequencies. By decomposing the experimental field and
comparing individual constituents against equivalents synthesised by our model, we are
able to present the first truly comprehensive, validated, mechanistic picture of wave–wave
interactions to arbitrary order. This synergy enables us to identify non-wave oscillatory
behaviour at frequencies shared by waves in the hierarchy and leads us to discover an
important open question regarding transmission efficiency within individual wave–wave
interactions. Although our experiments are generated by boundary displacements, we
present equivalences between source terms and boundary displacements so that the class
of applicable systems may be broadened. Our technique also generalises to aperiodic and
unbounded configurations and to any weakly nonlinear wave-governed system for which
there is an available Green’s function.

Key words: internal waves

1. Introduction

The interior of the oceans may be considered as a vast field of internal gravity waves.
Continuous stratification, gravitational forcing due to the lunar orbit (Rattray 1960) and
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suitable bathymetry conspire to produce a complex interior system of mechanical wave
transmission. Amplitudes of these waves may be hundreds of metres (Susanto, Mitnik
& Zheng 2005), but they are known to propagate at shallow angles and in beam-like
geometric patterns. In general, waveforms are modified by boundary topography (van
Haren, Maas & van Aken 2002), and in particular, their spectral form is crucial to
predicting their interaction. There are several well known features of internal wave
mechanics that arise due to nonlinearity in the underlying physics, and primarily these
arise from the quadratic structure of the advection operator. Viewed in spectral space,
the advection operator may be cast as a geometric relationship between wavevectors
and frequencies known as triadic interaction (Phillips 1960; Thorpe 1966). Special cases
include the interaction of two crossing wave beams (McComas & Bretherton 1977; Sun &
Kunze 1999a,b; Javam, Imberger & Armfield 2000; Tabaei, Akylas & Lamb 2005; Smith
& Crockett 2014), triadic resonant instability (Davis & Acrivos 1967; Martin, Simmons &
Wunsch 1969; McEwan 1971; Bourget et al. 2013) and a limiting case known as parametric
subharmonic instability (McEwan & Robinson 1975; Benielli & Sommeria 1998; Koudella
& Staquet 2006; Karimi & Akylas 2014). We will discuss in depth interactions of crossing
wave beams as part of this paper, but we refer the reader to Dauxois et al. (2018) for a
review of instabilities and Müller et al. (1986) for a broader overview.

Experiments have played an important role in refining our understanding of internal
wave systems ranging from early studies of oscillating cylinders (Görtler 1943; Mowbray
& Rarity 1967) to complex mechanical devices for generating quasi-planar waves
(McEwan 1971; Gostiaux et al. 2007). There are broadly three approaches to analysing
wave systems: characteristics, Green’s functions and Fourier methods. The oscillating
cylinder is the natural analogue of characteristic (Hurley 1972) and Green’s function
approaches (Hurley 1969; Voisin 1991), because spatially localised beams emerge in a
St. Andrew’s cross pattern and these are aligned with the characteristics. On the other
hand, Fourier methods more naturally correspond to quasi-planar systems (Mercier et al.
2010), where there is implicit spatial periodicity as well as temporal periodicity.

In this paper, we shall build a more general framework based on Green’s functions and
seek to validate using laboratory experiments, firstly on a polychromatic aperiodic example
case of lee waves, and then develop to a case where steady, periodic wave beams show
significant nonlinear interaction. The experiments utilise the unique capabilities of the
‘magic carpet’ (Dobra, Lawrie & Dalziel 2019) to generate a full spectrum of wave beams,
synthetic Schlieren (Dalziel, Hughes & Sutherland 1998; Sutherland et al. 1999; Dalziel,
Hughes & Sutherland 2000; Dalziel et al. 2007) to diagnose the resulting wave field from
density gradients and dynamic mode decomposition (Schmid 2010) to dissect the modal
structure. Using these tools, figure 1 illustrates a typical wave–wave interaction with two
incident beams in figures 1(a) and 1(b) with direction of propagation shown by the arrows.
Figure 1(c) shows a snapshot of the experimentally observed field, and figure 1(d–f ) shows
‘daughter’ modes that are observed to emerge nonlinearly from the interaction and have
directions of propagation as shown.

To address the question of nonlinear wave–wave interactions, our new framework will
allow for weakly nonlinear interactions between a hierarchy of Green’s functions. We
utilise Green’s functions to represent the driving waves and derive the weakly nonlinear
transfer terms that pass energy into other frequency and wavenumber components, these
also being represented in terms of Green’s functions. Our framework is sufficiently broad
to deal not only with interactions of the form shown in figure 1 that lead to resonance
(disturbances that satisfy both the geometric conditions on wavenumber and frequency
and also satisfy the relevant dispersion relation) but also those where the linear dispersion
relation is not satisfied.
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Figure 1. Schematic showing a decomposition of a wave–wave interaction between two incident internal wave
beams (a,b). Panel (c) shows the full experimentally observed wave field. Panels (d–f ) show nonlinearly
generated ‘daughter’ modes that are identifiable from the experiment. The arrows indicate the direction of
propagation of each wave beam.

The structure of this article is as follows. We present the background material to
the governing equations in § 2 and discuss the tractability of other analytical options.
Focussing on the monochromatic Green’s function solution to the linear equation in § 3, we
prepare the building blocks of a hierarchical numerical approach. In § 4, we demonstrate
application of this approach to inviscid, aperiodic systems, and carefully validate against
experiments using our ‘magic carpet’ (Dobra et al. 2019). We then generalise in § 5 our
numerical Green’s function approach so that we may capture the physics of nonlinearly
interacting internal waves. We employ the perturbation expansion technique of Tabaei
et al. (2005) and developed further in Dobra, Lawrie & Dalziel (2021) to account for
successive layers of wave–wave interactions and demonstrate that the resultant field
compares well with experimental observations. Finally, in § 6, we draw our conclusions.

2. Internal wave equation

We begin by considering two-dimensional, inviscid, linear internal waves in a quiescent,
Boussinesq density stratification, ρ0 (z). These restrictions closely approximate the
conditions in our laboratory experiments, where it is particularly advantageous to consider
flows with limited variation in the third dimension for ease of diagnosis. We define
x = (x, z) as the horizontal and vertical coordinates with corresponding unit basis vectors
{ex, ez}, and we assume there is no diffusion of mass or heat. Let t be time, u = (u,w) the
velocity field, p′ the perturbation from hydrostatic pressure, ρ00 be the Boussinesq
reference density, ρ′ (with

∣∣ρ′∣∣� ρ00) the perturbation from ρ0 (z) and g gravitational
acceleration. Then, the three nonlinear governing equations are the conservation of
momentum (Euler equation),

ρ00

(
∂u
∂t
+ u · ∇u

)
= −∇p′ − ρ′gez, (2.1)
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the conservation of volume (equivalent to incompressibility in the case of a homogeneous
fluid),

∇ · u = 0, (2.2)

and consequently the conservation of mass may be written as

∂ρ′

∂t
+ u · ∇(ρ0 + ρ′) = 0. (2.3)

In the linear wave approximation, the two nonlinear terms arising from the advection
operator u · ∇ are considered to be negligible. The remaining derivative operators can be
isolated into a complex matrix P that acts on a state vector φ, say, and the system arranged
into homogeneous form. Taking a single Fourier mode of φ with wavevector k = (k,m)
and frequency ω, we can write

φ = φ̂ exp(i (k · x− ωt)). (2.4)

The derivative operator, P, then takes the complex algebraic form P̂. For a homogeneous
system, non-trivial symmetries are found when the determinant |P̂| = 0, and these
correspond to resonant wave behaviours. From∣∣∣P̂∣∣∣ = ω2 −

(
− g
ρ00

dρ0

dz

)
k2

|k|2 = 0 (2.5)

arises a natural frequency, the buoyancy (Brunt–Väisälä) frequency,

N =
√
− g
ρ00

dρ0

dz
, (2.6)

and by examining the geometry of k/ |k|, the dispersion relation,

ω = N cosΘ, (2.7)

is obtained, where Θ is the angle between wavevector k and the horizontal. Since this
system is linear, any perturbation quantity χ satisfies the dispersion relation provided that

(ω2 |k|2 − N2k2)χ̂ = 0. (2.8)

Taking the inverse Fourier transform yields the linear internal wave equation,(
∂2

∂t2
∇2 + N2 ∂

2

∂x2

)
χ = Lχ = 0, (2.9)

where we define L to be the corresponding operator. From any choice of χ , the polarisation
of any other quantity can be derived by appropriate substitution into the linearised
equations. In particular, any such quantity will also satisfy the linear internal wave
equation.

Source terms may be configured to be equivalent to the action of boundaries, and
we will see in § 5 that they can also inductively account for discrepancies between a
linear wave approximation and the corresponding nonlinear field. Thus, we consider
solution approaches to the inhomogeneous internal wave equation, Lχ = f , with source
distribution f (x, t).

While we could choose to work with any variable χ , it is important to select a
representation of the system that has a clear physical interpretation. In view of this, two
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interesting choices of χ are an internal potential, ξ , as used by Voisin (1994) and Scase &
Dalziel (2004), and the streamfunction, ψ . We now consider the physical interpretation of
point source terms for each of these potentials in turn.

The internal potential is defined by

u =
(
∂2

∂t2
∇ + N2ex

∂

∂x

)
ξ =

((
∂2

∂t2
+ N2

)
∂ξ

∂x
,
∂3ξ

∂t2∂z

)
, (2.10)

and is chosen such that ∇ · u = Lξ . We consider an instantaneous point source of unit
strength at x0 that is active at time t0, expressed in terms of Dirac-δ functions as f =
δ (x− x0) δ (t − t0). Integrating along a short time interval including t0 over some fixed
volume V around x0 with boundary ∂V and using Lξ = ∇ · u in conjunction with the
divergence theorem gives

∫ t0+ε

t0−ε

∫
V

f dV dt =
∫ t0+ε

t0−ε

∫
V
Lξ dV dt =

∫ t0+ε

t0−ε

∫
∂V

u · dS dt, (2.11)

which is the total volume of fluid ejected through enclosing surface, S. Therefore, the point
source of unit strength injects one unit of fluid volume.

The other interesting choice, the streamfunction, ψ , is an integral of the velocity field
according to

u = ∇ × (ψey
) = (−∂ψ

∂z
,
∂ψ

∂x

)
. (2.12)

It follows immediately that the vorticity ∇ × u = −∇2ψ , and it appears in the first term
of the internal wave equation (2.9) if we set χ = ψ . Expressing the linear terms of (2.3)
in terms of ψ , multiplying by g/ρ00 and differentiating with respect to x, we obtain

N2 ∂
2ψ

∂x2 =
g
ρ00

∂2ρ′

∂x∂t
. (2.13)

The left-hand side appears in (2.9) and so we may integrate with respect to t to obtain the
vorticity equation,

− ∂
∂t
∇2ψ − g

ρ00

∂ρ′

∂x
= 0, (2.14)

which can also be derived directly from the linearised momentum equation. Vorticity in a
fixed control volume changes only due to baroclinic generation or by the introduction of
sources applied on the right-hand side of (2.14). For a source f = δ (x− x0) δ (t − t0) in
the internal wave (2.9), the corresponding vorticity source in (2.14) may be expressed in
terms of the Heaviside step function, H, as

∫
f dt = δ (x− x0)H (t − t0), which we may

interpret as a supply of vorticity at unit rate after t0.
While steady-state waves in any system violate causality, they provide a good

approximation to their long term behaviour, so in practice, we use monochromatic sources
of the form f = δ (x− x0) exp (−iωt) for any choice of χ . For the internal potential, ξ , the
volume source is of unit amplitude and is in phase with f , and for the streamfunction, ψ ,
we account for the phase difference of a vorticity source by introducing a factor of −i/ω.
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With any choice of χ , one candidate approach uses Fourier transforms in both time and
space (denoted by a circumflex) to yield the algebraic equation,

ψ̂ = f̂

ω2 |k|2 − N2k2
. (2.15)

We note, however, that the denominator is zero for any Fourier modes that satisfy the
dispersion relation, and these correspond to resonant modes. In common with a simple
harmonic oscillator, the amplitudes of resonant modes grow linearly. This growth may
occur in time, however, over a broad class of wave equations that exist in multiple
dimensions, growth may equally occur along spatial directions, and this remains the case
for any linear combination of space–time directions (Dobra 2018). Although in the internal
wave system each mode is a plane wave of infinite extent, a broadband linear superposition
of such modes may be configured to produce an internal wave beam in space with finite
width. Counterintuitively, there exists the limiting case of steady-state resonance, where
all of the energy is transported away from the source and amplitude growth is found in
purely spatial directions.

Dobra (2018) combined these resonant waves with non-resonant forced oscillations
to obtain an integral solution in terms of inverse Fourier transforms. However, exact
solutions only apply to periodic domains, yet the experimental configurations we consider
in §§ 4 and 5 are best approximated by a combination of reflecting and non-reflecting
boundary conditions, which Fourier methods do not in general support. Given that an
intermediate aim in § 3 is to establish a numerical method with broad enough generality
to handle aperiodicity in both space and time, we must explore alternative techniques for
a computationally efficient implementation.

One such approach uses a suitably chosen Green’s function, encoding the system
response to a point source. A distribution of point sources in space and time may be
configured to represent an arbitrary excitation of the system, and in this work we consider
distributions that produce interference patterns representing both boundary displacements
and mode–mode interactions. For the simplest point source, f = δ (x− x0) δ (t − t0),
Sekerzh-Zen’kovich (1981) derived the instantaneous Green’s function by Fourier
transforming in space only, solving the resulting ordinary differential equation in time
and taking the inverse transform. Once again, however, we have non-vanishing solutions
at the boundary, and in any finite domain (such as one requires to compute an approximate
numerical solution), the Green’s function obtained using Fourier techniques encodes
the response to a periodic array of isolated point sources. By instead using a sustained
monochromatic source, f = δ (x− x0) exp (−iωt), we will obtain a solution in terms of
elementary functions (see § 3), so we will avoid difficulties with non-vanishing solutions
at the boundary.

3. Monochromatic Green’s function

3.1. Analysis
The monochromatic Green’s function, Gω (x; x0), is the solution to the internal wave
equation with point forcing as given by

(
∂2

∂t2
∇2 + N2 ∂

2

∂x2

)
Gω exp (−iωt) = δ (x− x0) exp (−iωt). (3.1)
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Provided we have a solution for Gω, the solution to the internal wave equation with source
distribution of the form f = fω (x, z) exp (−iωt) is

χω (x) =
∫

R2
Gω (x; x0) fω (x0) d2x0, (3.2)

where R
2 spans the two-dimensional physical space.

The precise form of the Green’s function, Gω, depends on the configuration of the
domain and boundary conditions. In the well studied case of internal tides (e.g. Robinson
1969; Pétrélis, Smith & Young 2006; Balmforth & Peacock 2009), the appropriate
Green’s function takes the form of a sum of normal modes. However, this is less
general than the spatially unbounded case considered by Voisin (1991), who presented
a comprehensive derivation of the three-dimensional Green’s functions. His work
considered both instantaneous and monochromatic sources and considers in some depth
the implications for causality of using Green’s functions for internal waves. Motivated
by physical arguments, earlier work by Hurley (1969) quoted the two-dimensional
streamfunction due to a monochromatic point vorticity source, which we identify as
−iωGω in our own work, but this does not include the instantaneous source solution we
discussed at the end of § 2. This is important because instantaneous sources are potentially
an attractive foundation for a semi-analytical model with sufficient generality to study both
wave and non-wave perturbations to a density field. Unfortunately, there is no numerical
method for an unbounded Fourier transform, and there are concerns over causality in the
spatially periodic domain that we would require for a corresponding numerical method.
The simplest causal foundation is the monochromatic source. We note in addition that
both Hurley and Voisin use exponential, rather than linear, density stratifications. The
exponential form leads to a distinct interpretation of the buoyancy frequency, N, and the
linear wave equation includes an additional term arising from the curvature, ∂2ρ0/∂z2,
of the stratification. The solutions in linear and exponential stratifications are related by
a conformal map. Given these points and further technical intricacies that are specific
to the two-dimensional case and influenced our choice of integration scheme, there is
need for presenting our own solution in preparation for a flexible, general numerical
implementation.

Our solution approach is summarised as follows, with full details in Appendix A.
Evaluating the time derivatives in (3.1), defining the constant Γ = (1− (N/ω)2)1/2 and
cancelling the temporal exponential terms yields

Γ 2 ∂
2Gω
∂x2 +

∂2Gω
∂z2 = −

δ (x− x0)

ω2 . (3.3)

We note that Γ is real for evanescent internal waves, |ω| > N, but is imaginary for |ω| <
N. For Γ ∈ R, this elliptic equation is a skewed Poisson’s equation, and a dilatation allows
us to use the free-space Green’s function for the unskewed Poisson’s equation. Specifically,
if r is the distance from the source in the transformed space so that

r2 = (x− x0)
2

Γ 2 + (z− z0)
2 , (3.4)

then the standard Green’s function for a source that will generate an evanescent wave is

Gω = − log (r2)

4πω2Γ
. (3.5)

Analytic continuation from |ω| > N to all ω ∈ R enables a solution to the corresponding
hyperbolic equation, and for |ω| < N wavepackets propagate along the real-valued
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Figure 2. Real component of the evanescent Green’s function for ω = 1.1N, which shows (a) the streamlines
and (b) contours of the internal potential, and the derived velocity fields at t = 0. The velocity indicators have
been scaled for plotting. The potentials and their corresponding fluid speeds grow unboundedly at the origin.
The imaginary part is identically zero.

characteristics, as discussed in Dobra et al. (2021). There are branch points where the
argument of a logarithm or a number raised to a fractional power is zero or infinity, so the
branch points are at r2 = {0,∞} and 1/Γ = {0,∞}. The r2 = 0 branch points,

ω = ± N√
1+

(
x− x0

z− z0

)2
, (3.6)

only occur where |ω| ≤ N and are on the characteristics passing through x0. The 1/Γ =
{0,∞} branch points correspond to ω = 0 and ω = ±N, respectively, the latter coinciding
with r2 →∞. We tabulate the Green’s function for each solution region in table 3 in
Appendix A, where we classify by the complex argument of r2 and 1/Γ . By defining
γ = ((N/ω)2 − 1)1/2 = tanΘ , as may be inferred from the dispersion relation (2.7), we
condense all the propagating cases to

Gω = isgn(ω)

log

∣∣∣∣∣
(

x− x0

γ

)2

− (z− z0)
2

∣∣∣∣∣
4πω2γ

+ 1
4ω2γ

H

((
x− x0

γ

)2

− (z− z0)
2

)
.

(3.7)

For sources that generate evanescent waves, γ ∈ I, the Green’s function is real, so the
response is in phase with the forcing. A contour plot of the Green’s function is shown in
figure 2. As ω→∞, or equivalently as N → 0, the elliptical contours broaden to become
circular. In the limiting case, this is the unstratified potential flow response corresponding
to our choice of χ . The contours of the streamfunction, ψ , always represent streamlines
in the flow, whereas only in the case when the internal potential, ξ , is monochromatic
and N = 0 do its contours coincide with those of the classical velocity potential, φ,
as defined by u = ∇φ. The fundamental streamfunction flow is a monochromatic point
vortex, whereas for the internal potential, it is a monochromatic volume source.
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Figure 3. Imaginary component of the propagating Green’s function for ω = 0.5N, which shows (a) the
streamlines and (b) contours of the internal potential, and the derived velocity fields at time t = π/ (2ω).
The velocity indicators have the same scale as those in the evanescent case (figure 2). The potentials and
corresponding fluid speeds grow unboundedly at the characteristics, with the largest ones, which would only
be visible near the origin, omitted for clarity. The real part is zero in the regions above both characteristics and
below both characteristics, and is 1/(4ω2γ ) in the remaining regions to the left of both characteristics and to
the right of both characteristics.

For |ω| < N (Γ ∈ I, γ ∈ R), we obtain propagating solutions with characteristics of
gradient ±1/γ . The imaginary part of the Green’s function for ω = 0.5N is plotted in
figure 3. The real part is piecewise constant with discontinuities across the characteristics.
When |x− x0| > γ |z− z0|, the real part equals 1/(4ω2γ ) and equals zero elsewhere. We
see a St. Andrew’s cross pattern analogous to that produced by a small cylinder undergoing
vertical oscillations (Görtler 1943; Mowbray & Rarity 1967). The potential and derived
velocities grow unboundedly on approaching the characteristics, which is a consequence
of the idealisations (e.g. neglecting viscosity) embedded in this model. Nonetheless, when
integrated over point sources of zero area, a finite contribution is obtained in the same way
that an integration over δ-functions produces a finite integral, a property we will exploit
in § 3.2.

For |ω| < N (γ ∈ R), the separable form of r2 allows us to decompose the argument of
the logarithm into two characteristic coordinates,

η± =
(

x− x0

γ

)
∓ (z− z0) , (3.8)

such that the η+ characteristics have positive slope and η− negative. The argument of the
logarithm,

∣∣r2
∣∣, becomes a difference of squares because Γ 2 < 0, so decomposes into the

characteristic coordinates,∣∣∣r2
∣∣∣ = ∣∣∣∣

[(
x− x0

γ

)
− (z− z0)

] [(
x− x0

γ

)
+ (z− z0)

]∣∣∣∣ = |η+η−| . (3.9)

Therefore, the logarithm splits into two linearly superposed components with no
cross-term,

log
∣∣∣r2
∣∣∣ = log |η+| + log |η−|. (3.10)

The solution to a cylinder undergoing small vertical oscillations shares this decoupling into
η± components (Hurley 1997). In the critical limit ω→ N from below, the characteristics
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are vertical, which smoothly transition to the ellipses of contours with infinite aspect ratio
in the limit ω→ N from above.

3.2. Numerical implementation
In general, we are unable to analytically integrate the Green’s function, Gω, over the
distribution of point sources to determine χω from (3.2). Consequently, we now seek to
use our Green’s function solution as the basis for a semi-analytical method to evaluate
the potential, χω, at arbitrary locations in space. We anticipate distributed sources, so
the potential strength at any evaluation point in space will be composed of a linear
superposition of solutions from all sources. Unfortunately, our solution has logarithmic
singularities along the characteristics, and so any numerical method based on pointwise
evaluation will suffer from unresolvable infinities. However, with careful treatment we
may regularise these over finite integration elements, and thus we discretise the domain
into elements, E (xD), of size Δx�z. We account for the effect of integrating over an
element by introducing a corresponding modified discrete Green’s function, GD (x; xD),
and source distribution, fD (xD), where the centres of such elements are at xD, so that

χω (x) =
∑
xD

GD (x; xD) fD (xD). (3.11)

While much of what follows is required to determine GD, we may simply take
fD (xD) = (1/ (�x�z))

∫∫
E(xD)

fω (x0) d2x0, integrated over the element. For smooth
source distributions, we make the approximation fD (xD) ≈ fω (xD). If instead there is an
isolated δ-function source of strength q that lies somewhere within the element, the mean
source density is fD = q/(�x�z). Correspondingly, a smooth line source distribution of
the form fω = q (x) δ (z− z0) has mean density fD ≈ q (xD) /�z.

We note in passing that while the transformed coordinate system (η+, η−) aligns with
the characteristic directions of propagating waves for some |ω| < N, no single coordinate
system would be optimal for a polychromatic wave field (as will be highlighted in § 4).
Thus, we opt to discretise a regular Cartesian grid in (x, z).

The Green’s function only depends on the displacement from the source to the
evaluation point, so by moving the reference frame to the centre of the finite element
enclosing the source, xD, we may define a continuous variable x′ = x− xD over which
we may integrate to determine GD for all elements. Since the grid is regular, then by
accepting a small discretisation error no larger than �x/2, between the location of the
source and the centre of the element we only need to calculate the Green’s function once
for each relative displacement at any given frequency. Then, we translate the resulting
array of values according to xD when evaluating the summation for χω (3.11), truncating
any values that fall outside the numerical domain.

We choose approximate formulae for each evaluation of the Green’s function, GD,
according to the classification in figure 4. The figure only shows elements in the first
quadrant, with the other quadrants deduced by symmetry. In the remainder of this section,
we explain the decision points and formulae referenced in the figure.

Except at the source and elsewhere near its characteristics, the continuous Green’s
function is regular and may be approximated by a Riemann sum of the form

GD (x; xD) ≈ Gω (x; xD)�x�z. (3.12)
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Element classification

Regular

(3.12)

or

Singular

(3.15)

|ω| < N |ω| > N

2 characteristics
Im{η±}: (3.17)

1 characteristic
Im{η+}: (3.17)
Im{η–}: (3.12)

Source

Re: case 1 Re: case 2

Opposite sides

Re: case 3 Re: case 4

Adjacent sides

Re: case 5 Re: case 6

Adjacent sides

Re: case 7 Re: case 8

Opposite sides

Re: case 9 Re: case 10

Figure 4. Classification of finite element types in the first quadrant showing the breakdown according to
whether Gω remains finite within the element, whether propagating or evanescent and by the geometry of the
intersections between characteristics and the element boundary. The thumbnail images show Re{Gω}, which
equals 1/(4ω2γ ) in the shaded regions and zero elsewhere. Formulae for evaluating GD are given for each case,
and the areas for calculating Re{GD} in the propagating case are referenced by their case numbers in table 1.

For |ω| > N, the only singular element is that which encloses x = x0, and in this case
the integral is given by

GD (xD; xD) =
∫ �x/2

−�x/2

∫ �z/2

−�z/2
−

log

((
x′

Γ

)2

+ z′2
)

4πω2Γ
dz′ dx′. (3.13)

The dominant contribution to the integral comes from the logarithm close to the
singularity, so we approximate the integral on the rectangular element by an ellipse
of equivalent area. After dilatation, the radius, R, of the resulting circle is given by
πR2 = �x�z/Γ . We re-express the Green’s function in polar coordinates,

GD (xD; xD) ≈
∫ 2π

0

∫ R

0
− log

(
r2)

4πω2Γ
r dr dθ. (3.14)
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Integration by parts gives

GD (xD; xD) ≈ �x�z
4πω2Γ 2

(
1− log

�x�z
πΓ

)
. (3.15)

For the case where internal waves may be generated, |ω| < N, the imaginary part of
the Green’s function decomposes into the sum of two linearly independent components
(3.10), one for each characteristic direction. Using symmetry, singular elements along the
x′ or z′ axes intersect both characteristics (the case of two characteristics in figure 4).
Conversely, singular elements away from the axes may only intersect one characteristic.
We calculate each η± component of GD separately and then add them together. For
elements significantly away from the corresponding characteristic, η± = 0, the component
of the Green’s function varies approximately linearly across the element and we invoke the
centre-value approximation for a regular point (3.12). Otherwise, when the characteristic
passes through an element or close to one of its corners, we approximate this component
of GD using integrals as follows.

Let us consider the η+ component for a singular element, and define ηR and ηL to be the
maximum and minimum values respectively of η+ = x′/γ − z′ in this element. Because
the level sets of η+ are lines of positive gradient and η+ is increasing in x′, the maximum
value of η+ occurs in the bottom-right corner of the element and the minimum in the
top-left corner, so

ηR = η+
(

x′ + �x
2
, z′ − �z

2

)
=

x′ + �x
2

γ
−
(

z′ − �z
2

)
, (3.16a)

ηL = η+
(

x′ − �x
2
, z′ + �z

2

)
=

x′ − �x
2

γ
−
(

z′ + �z
2

)
. (3.16b)

We approximate the contribution across the element by integrating over a rectangle aligned
with the characteristic that intersects the element corners where η+ = ηR and η+ = ηL,
and then scale the value by the ratio of areas. The contribution to GD is approximately(

�x�z
|ηR − ηL|

)(
i

4πω2γ

∫ ηR

ηL

log |η+| dη+
)

=
(

�x�z
|ηR − ηL|

)(
i

4πω2γ

)
(ηR (log |ηR| − 1)− ηL (log |ηL| − 1)) , (3.17)

after integration by parts, where we clarify that η log η = 0 when η = 0. By symmetry,
the same expression holds for the singular contribution due to η− terms.

This leaves the real part of Gω to consider. It is only non-zero in the regions to the left
and to the right of the source bounded by the characteristics, which are shown for the
first quadrant as shaded regions in figure 4. The real part of the integral over the element
is given by 1/(4ω2γ ) multiplied by the shaded area. We present in table 1 the formulae
for all permutations of shaded area expressed in the x′ coordinate system centred on an
element.

4. Application to aperiodic configurations

4.1. Introduction
Internal waves are frequently generated by moving boundaries. For example, in the
laboratory, McEwan (1971, 1973) used articulated paddles and Gostiaux et al. (2007)
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Table 1. Shaded area of each type of singular element centred on x′. These thumbnails are shown for
quadrant 1; other quadrants are deduced by symmetry. It is helpful to observe that

∣∣x′∣∣ = γ ∣∣z′∣∣ on the
characteristics. In cases 7–10, in addition to the given criteria, we explicitly require that a characteristic passes
through the element: in the first and third quadrants, only the η+ characteristic may intersect the element, but
in the second and fourth quadrants, only the η− characteristic may intersect it. These areas are multiplied by
1/(4ω2γ ) to give Re{GD}.

used rotating cams, but these are best suited to monochromatic excitations. We installed
a ‘magic carpet’ (Dobra et al. 2019) in the base of our tank, which has more general
possibilities for excitation. Likewise, we generalise our numerical method for a single
frequency, χω exp (−iωt), described in § 3 to those that have a continuous spectrum of
frequencies.
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Input: f (x, t), N
Result: χ (x, t)

χ ← 0
for ω ∈ R do

fD (x)← �t
2π

∑
t f (x, t) exp (iωt)

// Calculate discrete Green’s function using
figure 4

GD ← table (2Nx − 1, 2Nz − 1) // Set up lookup table
foreach (i, j) ∈ GD do

if Regular element then GD (i, j) = (3.12)
else // Singular element

if |ω| > N then GD (i, j) = (3.15)
else // |ω| < N

foreach Characteristic do
if Element intersection then Im{GD (i, j)} = (3.17)
else Im{GD (i, j)} = (3.12)

end
Re{GD (i, j)} = 1

4ω2γ
× (shaded area: table 1)

end
end

end

// Sum over sources according to (3.11)
χω ← table (Nx,Nz)
foreach (k, l) ∈ χω do

χω (k, l)← 0
foreach (i, j) ∈ fD do

χω (k, l)← χω (k, l)+ GD (Nx + k − i,Nz + l− j) fD (i, j)
end

end
χ ← χ + χω exp (−iωt)

end
ALGORITHM 1. Calculation of potential χ for an arbitrary source distribution f (x, t). It is calculated
mode by mode using the discrete monochromatic Green’s function, GD. At each frequency, we first
evaluate fD and GD, then finally we accumulate contributions to the potential field.

For a distribution of sources f (x, z, t) = ∫ fω (x, z) exp (−iωt) dω, we may write

χ (x, t) =
∫

R

exp (−iωt)
∫∫

R2
Gω (x; x0) fω (x0) d2x0 dω. (4.1)

Our numerical method allows replacement of these integrals with the discrete Fourier
transform, and thus we may approximate general wave fields. We summarise our procedure
in algorithm 1. In the special case of a discrete set of input frequencies, we no longer need
to resolve the Fourier transform and all the frequencies can be represented exactly.

In our model, we consider flexible boundaries as sources of either volume or vorticity.
As we saw in § 2, source terms in the internal wave equation for internal potential
and streamfunction represent volume and vorticity sources respectively. We now derive
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A hierarchical decomposition of internal wave fields

formulae for the source terms of both potentials, ξ and ψ , to describe each temporal mode
of an arbitrary vertical displacement of a horizontal boundary.

4.2. Representing active boundaries with finite element sources
In both cases, we can readily derive volume fluxes for a monochromatic source of unit
strength by integrating the Green’s function, so we rescale these fluxes to match a discrete
physical representation of a short distance along the boundary. The rescaling factors are
collectively the required distribution of sources along the entire length of the boundary.
Here, we outline the method and summarise key results; see §§ 4.2.1 and 4.2.2 for full
derivations. Throughout this section, all sources are at the zero-height of the magic carpet,
so without loss of generality we take z0 = 0.

We seek to determine the volume flux, Q (t) = Qω exp (−iωt), induced by a
monochromatic source of unit strength across a transect of the domain. For the internal
potential, the transect is a horizontal line at z > 0 ranging from x = −∞ to +∞,
across which the flux amplitude Qω = 1

2 . Whereas, the corresponding transect for the
streamfunction is a vertical line segment to the right of the wave maker (assuming the
case of rightward propagating waves, ωk > 0) ranging from z = 0 to +∞, across which
Qω = 1/(4ω2γ ). In both cases, we find that the component of the Green’s function flow
satisfying the conditions imposed by the physical model of the magic carpet is in phase
with the forcing, Re{Qω}, and the implied flow has the form of linear jets along the
characteristics, which can be represented by δ-functions.

The total volume flux from one finite grid element of width �x and height �z that
is centred on (xD, 0) and contains the distribution of monochromatic point sources f =
fω (x, z) exp (−iωt) is

∫ xD+�x/2

xD−�x/2

∫ �z/2

−�z/2
Qωfω

(
x′, z′

)
exp (−iωt) dz′ dx′ ≈ �x�zQωfω (xD, 0) exp (−iωt).

(4.2)

Then, we equate this expression with the corresponding volume flux, R (t) =
Rω exp (−iωt), predicted by a physical model of volume displacement by the wave maker
surface to obtain the distribution of sources,

fω (xD, 0) = Rω
�x�zQω

. (4.3)

For the internal potential, Rω = −iω�xhω (xD), so

fω (xD, 0) = −2iω
�z

hω (xD) . (4.4a)

Whereas, for the streamfunction, Rω = −(iω�x/2)hω (xD), so

fω (xD, 0) = −2iω3γ

�z
hω (xD) . (4.4b)

934 A33-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1115


T.E. Dobra, A.G.W. Lawrie and S.B. Dalziel

4.2.1. Internal potential
For the internal potential, we determine the total vertical volume flux through a line of
constant z /= 0,

Q (z, t) = Qω (z) exp (−iωt) =
∫ ∞
−∞

w (x, z, t) dx, (4.5)

for the Green’s function when 0 < ω < N. The vertical velocity field, w, is given by
∂3 (Gω exp (−iωt)) /∂t2∂z and thus w = −ω2(∂Gω/∂z) exp (−iωt). Since the following
is equally applicable to continuous and discretised sources, we adopt (x0, z0) notation to
represent a source. Applying the chain rule to Gω (3.7) when z0 = 0, we obtain

∂Gω
∂z
= −i

z

2πω2γ

[(
x− x0

γ

)2

− z2

] − z
2ω2γ

δ

((
x− x0

γ

)2

− z2

)
. (4.6)

Along a path of constant z (where z /= 0) as shown in figure 5, the imaginary part has
two simple poles, x = x0 ± γ z, which are where the path crosses the characteristics of Gω,
and ∂Gω/∂z asymptotes inverse–linearly towards them. Between the poles (in the line
segment containing x = x0), sgn(Im{∂Gω/∂z}) = +sgn(z), and outside the poles (where
x→±∞), sgn(Im{∂Gω/∂z}) = −sgn(z). Thus, we may use the Cauchy principle value
to regularise Qω at each pole. The imaginary part exhibits even symmetry about x = x0,
so it suffices to consider only half of the domain and double the result,

Im{Qω (z)} = lim
ε→0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z
πγ

⎛
⎜⎜⎜⎝
∫ x0+γ z−ε

x0

dx(
x− x0

γ

)2

− z2

−
∫ ∞

x0+γ z+ε
dx(

x− x0

γ

)2

− z2

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(4.7)

Factoring out z2 and using the substitution p = (x− x0) / (γ z) leaves

Im{Qω (z)} = lim
ε→0

{
1
π

(∫ 1−ε/(γ z)

0

dp
p2 − 1

−
∫ ∞

1+ε/(γ z)

dp
p2 − 1

)}
. (4.8)

The scaling on the limit variable, ε, is the same for both integrals, so we may replace
the corresponding limits on the integrals by 1∓ ε. Then, evaluating the definite integrals
yields

Im{Qω (z)} = lim
ε→0

{
1

2π

([
log

1− p
1+ p

]1−ε

0
−
[

log
p− 1
p+ 1

]∞
1+ε

)}
= 0. (4.9)

Next, we consider the integral over the δ-function in the real part. Along a path of
constant z, the argument of the δ-function has two simple zeros, y1,2 = x0 ± γ z, for which
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z

x

x = x0 – γz x = x0 + γz

x0

Integration path

Poles of
∂Gω

∂z

Figure 5. Integration path for calculating the volume flux, Q, for the internal potential, showing the locations
of the poles in the imaginary part of ∂Gω/∂z, which are also the locations of the singularities in the real part.

we use the standard formula,

δ (f (x)) =
2∑

k=1

δ (x− yk)∣∣∣∣∣ df
dx

∣∣∣∣
yk

∣∣∣∣∣
. (4.10)

Here, df /dx = 2(x− x0)/γ
2, so we have

Re{Qω (z)} =
∫ ∞
−∞

z
2γ

⎛
⎜⎜⎝δ

(
x− [x0 + γ z

])∣∣∣∣ 2
γ 2 γ z

∣∣∣∣
+ δ

(
x− [x0 − γ z

])∣∣∣∣− 2
γ 2 γ z

∣∣∣∣

⎞
⎟⎟⎠ dx. (4.11)

Each δ-function contributes a value of one to the integral and z/|z| = sgn(z), so
Re{Qω (z)} = 1

2 sgn(z). Therefore, Q (z) = 1
2 sgn(z) exp (−iωt).

The total vertical volume flux through a horizontal transect is half the strength of
the internal potential point source and is in phase with the source. The flux has a
vertical component everywhere except z = 0 and points away from the source when the
source is positive. Closing a rectangular contour along z = ±z0 and x = ±∞, symmetry
arguments determine that the vertical integrals at x = ±∞ are both zero and integration
along the horizontal edges doubles due to the direction in which they are taken. Thus, a
monochromatic point source of internal potential of unit strength forces the internal wave
equation such that the total volume flux is monochromatic and of unit strength.

We remark that this result also applies to a corresponding integral when the Green’s
function is for the streamfunction,∫ ∞

−∞
−u dx =

∫ ∞
−∞

∂Gω
∂z

dx = 1
2

sgn(z) exp (−iωt). (4.12)

Using the same rectangular contour, we obtain the circulation around the point source to
be 1

2 exp (−iωt). Letting z→ 0 so that the area enclosed in the contour tends to zero and
invoking Stokes’ theorem shows that the source is a point vortex of strength 1

2 exp (−iωt).
Similar to a resonant simple harmonic oscillator, there are components of the internal

potential field both in phase to the forcing and with a phase lag of a quarter oscillation
behind the source. Here, the in-phase response ensures the conservation of volume by
generating line jets only and exactly along the characteristics, while the phase-lagged
response has zero net volume flux despite inducing a flow over the whole domain.
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xDxD – �x
z = 0

xD + �x

(xD, t)
∂h
∂t

Figure 6. Finite element of width �x representing wave maker displacement at a single location. We use this
model to calculate the induced vertical volume flux required for sources to the internal potential, which is
�x ∂h/∂t|(xD,t). The vertical dashed lines indicate the element centrelines.

Physically modelling the wave maker, the upwards volume flux generated by an element
with vertical displacement h, as shown in figure 6, is

R (t) =
∫ xD+�x/2

xD−�x/2

∂h
∂t

dx′, (4.13)

which is approximately equal to −iω�x hω exp (−iωt) for small elements. Substituting
this into the formula for the required element source strength (4.3) yields the required
source strengths for use in the discrete Green’s function, fω (xD, 0) = −(2iω/�z)hω (xD).

4.2.2. Streamfunction
When the Green’s function represents the streamfunction, the volume flux across any
horizontal or vertical transect is zero, because sources in the streamfunction internal wave
equation are vortices. Instead, since the volume flux across a path is equal to the difference
between the values of the streamfunction at each end, we note that the real part of the
volume flux induced by Gω (3.7) across any semi-infinite vertical line from z = 0 to z = ∞
for constant x is Qω = 1/(4ω2γ ). The point vortex is in phase with the source, so it is not
necessary to consider the imaginary part.

For the physical model, we consider a wave maker profile that is spatially sampled
every δx and is zero everywhere except at one sample point, x = xp, as shown in figure 7.
We assume that the wave maker is piecewise linear between the sample points. The
rightwards volume flux generated to the right of the displaced infinitesimal element is
R
(
xp + δx, t

) = (�x/2)∂h/∂t|(xp,t). Conversely, the rightwards volume flux to the left of
the element is R

(
xp − δx, t

) = −(�x/2)∂h/∂t|(xp,t). In the continuum limit, we have

∂R
∂x

∣∣∣∣
(xp,t)

= lim
δx→0

R
(
xp + δx, t

)− R
(
xp − δx, t

)
2δx

= 1
2
∂h
∂t

∣∣∣∣
(xp,t)

. (4.14)

Integrating such point contributions over a finite element of width �x centred on (xD, 0)
gives the total horizontal volume flux across one source element,

R (xD, t) =
∫ xD+�x/2

xD−�x/2

1
2
∂h
∂t

dx ≈ �x
2
∂h
∂t

∣∣∣∣
(xD,t)

, (4.15)

to leading order in �x. Thus, Rω = −(iω�x/2)hω (xD) and

fω (xD, 0) = −2iω3γ

�z
hω (xD) . (4.16)
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2

xpxp – δx
z = 0

xp + δx

(xp, t)

(xp , t)

∂h
∂t

∂h�x
∂t 2 (xp , t)

∂h�x
∂t

Figure 7. Infinitesimal element representing wave maker displacement at a single location, assuming the
profile to be linear between sample points δx apart and the domain to have a rigid lid. We use this model
to calculate along-wave maker gradients of induced horizontal volume flux, whose integrals are required for
finite sources of width �x to the streamfunction.

4.3. Boundary considerations
Non-zero-frequency internal waves in a finite domain will inevitably reflect off the top and
bottom. In both cases, the fluid cannot flow across the boundary, so we take w = 0 as the
boundary condition and exploit the characteristic structure of internal waves to enforce it.
The required potential, χ , for the reflected wave is calculated along the boundary and then
projected along its characteristics using an approach introduced in Dobra et al. (2021).
The characteristics of the reflected wave are oriented in the opposite vertical, but same
horizontal, direction as the incident wave.

For the internal potential in a monochromatic flow, w = −ω2∂ξ/∂z and on the
boundary, the reflected wave may take the same value of the internal potential as the
incident wave. By contrast, the vertical velocity is obtained from the streamfunction
as w = ∂ψ/∂x, giving ψ = const. on the boundary, so we require that the reflected
streamfunction is the negative of the incident. In both cases, we set the gauge constant
to zero for convenience.

Evaluating χ only on the boundary is insufficient to deduce the horizontal direction
of incident characteristics. A wave field of a particular frequency may contain waves in
all directions, so we use a principal axes transformation to decompose the incident wave
field into left- and right-travelling waves according to the direction of the gradient vector
(Dobra 2018, pp. 37–39) and reflect each component in turn.

The interference pattern arising from the distribution of sources generates the desired
wave field, but where the source array is abruptly truncated, powerful harmonics are
emitted and they may contaminate the solution within the domain. To reduce the severity
of such truncation, we smoothly reduce the source strength to zero at the lateral extremities
of the calculation domain according to a C3-continuous ramp that extends well beyond
the field of view. Similarly, we use a significantly extended temporal domain for the
Fourier transform to avoid periodic reflection in time activity that is aperiodic and short in
duration.

4.4. Experimental method
The ‘magic carpet’ or Arbitrary Spectrum Wave Maker (Dobra et al. 2019) is a flexible
1 m long and flush with the base of a tank that is 11 m long, 0.255 m wide and 0.48 m deep.
The magic carpet’s shape is controlled by an array of 100 linear stepper motors positioned
at a pitch of 10 mm, each with a vertical resolution of 0.0127 mm and a stroke of 48 mm.
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The surface of the wave maker is a nylon-faced neoprene foam sheet of thickness 3 mm.
The material has some resistance to bending, but the attachment mechanism is designed
to minimise the tensile stress in the sheet and the bending moments on the actuating rods.
We model the surface deformations at each instant, h (x, t), as satisfying

Es3

12
∂4h
∂x4 − T

∂2h
∂x2 = p∗, (4.17)

where E is Young’s modulus, s is the sheet thickness, T is the longitudinal tension in the
sheet and p∗ is the pressure difference across the sheet, normally taken as zero. Defining
λ = (12T/(Es3))1/2, this equation has eigensolutions f (x) = [ 1 x cosh λx sinh λx ]T. For
our magic carpet, we find that λ ≈ 400. These solutions differ from the typical
Euler–Bernoulli linear beam by the presence of hyperbolic functions instead of cubic
polynomials, and these differences arise from longitudinal tension. Defining a vector of
constants b to be determined by the rod heights and enforcing C2-continuity, the general
solution between each rod is h (x) = b · f (x). Combining the boundary conditions for all
sections of the wave maker gives a linear system of equations with constant coefficients,
which can be easily inverted numerically.

We fill the tank using the double bucket method (Fortuin 1960; Oster 1965) with a linear
density stratification in brine producing a constant buoyancy frequency N = 1.45 rad s−1.
We observe density perturbations using Synthetic Schlieren, an optical technique (Dalziel
et al. 1998; Sutherland et al. 1999; Dalziel et al. 2000). A static, random pattern of
black and white dots is displayed on a 4k (UHD) television screen measuring 1.4 m(
55′′

)
on the diagonal that is 0.2 m behind the tank, following Sveen & Dalziel (2005).

The light rays emitting from the screen bend as they pass through the varying refractive
indices in the tank, and the distorted images are recorded at 4 f.p.s. on a 12-megapixel
ISVI IC-X12CXP video camera located 3.8 m in front of the tank. A pattern-matching
algorithm in the software package DigiFlow (Dalziel Research Partners 2018) is used
to reconstruct the gradient of the density perturbation from the recorded images, and
we plot its horizontal component, which is related to the internal potential according to
(1/ρ00)∂ρ

′/∂x = (N2/g)∂3ξ/∂x∂z∂t for linear waves.

4.5. An example: atmospheric lee waves
A travelling solitary hump is perhaps the simplest aperiodic waveform, directly analogous
to flow over an isolated mountain ridge (Dalziel et al. 2011). In our experiments, the fluid
is stationary in the tank, so boundary layers do not form upstream and we obtain cleaner
waveforms.

We seek to validate our numerical model in this configuration, and we choose to
calculate the wave field using the internal potential, although we could equally obtain the
same wave field using the streamfunction. Our hump consists of a complete wavelength
of a sinusoid ranging from trough to trough, where the troughs are flush with the zero
height of the magic carpet, with wavelength 0.081 m and peak-to-trough amplitude 0.028 m
propagating to the right at U = 0.0357 m s−1. We use 1024 points spanning 50 s for the
discrete Fourier transform, giving a frequency resolution of 0.13 rad s−1. The hump takes
2.3 s to pass any fixed location, which corresponds to a frequency of 2.8 rad s−1. With this
adequate temporal resolution, we thus avoid spurious reflections in the time domain.

The passing time of the hump corresponds to a frequency ratio of ω/N = 1.88, which
is evanescent. Thus, it is clear that in this case the propagating modes will arise only
from peripheral harmonics in the spectrum, an observation to which we will return in § 5.
Figure 8 compares our experiments with the wave train predicted by our model.
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Prediction Experiment

Figure 8. Prediction and experiment comparing (1/ρ00)∂ρ
′/∂x for a solitary sinusoidal hump of height

0.028 m and width 0.081 m moving at U = 0.0357 m s−1. Each image is separated by 5 s, and N = 1.45 rad s−1.
The majority of the wave energy exists in waves phase-locked with the hump, and these waves are restricted
to a semi-circular envelope, indicated by the black arc. Wave energy to the right of the arc is carried by
non-phase-locked waves, but whose spectrum results in a quasi-steady pattern of waves moving with the hump.
There are also evanescent modes forming an interference pattern near the hump, but due to discretisation of
the temporal spectrum in our prediction, some leakage of energy occurs along the wave maker surface but the
response remains localised.

Firstly, from selective withdrawal of modes in our numerical prediction, we deduce
that there are significant evanescent modes local to the hump, whose interference
pattern is required to capture the structure of the wave train observed in the
experiment.

Secondly, we see disturbances spread across the domain, both in front and behind
the hump. The waves ahead of the hump appear to be quasi-stationary and persist
in the observed timeframe between six and eleven passing periods of the hump
after its release. We conclude that these are not simply startup transients, and so
we use geometric reasoning to understand the distribution of wave energy in the
system.

One common approach is to use the principle of stationary phase (e.g. Lighthill 1978)
to restrict our analysis to elements of the wave field that move in phase with the hump.
The solitary hump may be characterised as a broadband spectrum of modes all travelling
with a common horizontal phase velocity, ω/k = U. It follows that for a given range of
wavenumbers, k, there must directly correspond a range of frequencies, ω. Thus, any
internal wave propagation generated by the hump has no preferential direction but must
share the same horizontal component of phase velocity. The dispersion relation (2.7)
constrains the magnitudes of all such wavevectors to the circle |k| = N/U. Consequently,
for positive frequencies and upwards propagation, only fourth-quadrant wavevectors
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remain, and their corresponding group velocities point into the first quadrant. These modes
comprise the majority of the observed signal, and their superposition results in curved
phase lines. Furthermore, by following rays traced parallel to each mode’s respective group
velocity, we may determine a propagation envelope for this class of quasi-steady wave.
This envelope forms a semi-circle joining the hump’s current and initial release locations
(Dalziel et al. 2011), as shown by black arcs in figure 8. These advancing semi-circles
grow in radius until the envelope asymptotically forms a vertical front.

Clearly, both the experiment and the prediction contain waves propagating ahead
of this envelope, so, as previously noted by Voisin (1994), the principle of stationary
phase is insufficient to account for the whole wave field. Given that there is signal
high above the wave maker and ahead of the hump, we deduce that these waves must
have significant vertical component to their group velocity and therefore have non-zero
frequency. Moreover, for internal waves the horizontal component of the group velocity
is bounded above by the horizontal component of the phase velocity, and any observable
wave ahead of the hump must have group velocity with horizontal component greater
than U, so the same must also be true for its phase velocity. Although counterintuitive,
it is possible for a composition of modes from a spectrum of phase velocities to form
a quasi-steady wave field that translates with a single apparent phase velocity. Akin to
the decomposition of a standing wave into opposing travelling waves, a carefully chosen
difference of frequencies is sufficient to create the required behaviour, although many
combinations of wavevector and frequency would also produce an equivalent result. We
conjecture that just such a superposition of modes is responsible for propagation ahead of
the envelope shown in figure 8.

We note that our approach requires the Fourier transform in time of the entire timeline.
Since the source strengths are zero at all times except when the hump is passing, the
ω-spectrum is broad. However, a discrete Fourier transform introduces discretisation error,
which when inverted produces sources at unwanted times. We see their effect as forced
oscillations along the magic carpet, which have insignificant effect on the rest of the wave
field.

Our wave propagation model does not directly account for energy leaving the modelled
system during a reflection, yet is present in the experiments. We employed a line-search
optimisation to determine suitable calibration parameters and accordingly multiply the
amplitude of the reflections at the free top surface by 0.6 while maintaining pure reflections
at the solid bottom boundary. Figure 9 demonstrates the necessity of accounting for this
energy loss.

5. Interactions of finite-width internal wave beams

5.1. Introduction
The literature on internal wave laboratory experiments can be divided into two broad
lines of enquiry: work following from Görtler (1943) and Mowbray & Rarity (1967)
on waves generated by a small oscillating body, and work on quasi-monochromatic line
sources following McEwan (1971, 1973). The capability of our magic carpet allows us to
span the range between these limiting cases, and although previous work using it (Dobra
et al. 2021) validated new theoretical predictions in the line-source limit, we seek here to
demonstrate the generality of these findings by applying them to an intermediate regime.
We examine the interactions of finite-width wave beams a few wavelengths across, since
recent explorations of such configurations (Smith & Crockett 2014) have uncovered a rich
dynamical structure. We have unparalleled access to observe and analyse such wave fields

934 A33-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1115


A hierarchical decomposition of internal wave fields
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m

1.0
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Prediction with
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coefficient of 0.6

Experiment

0.040 m–1

(a)

(b)

(c)

Figure 9. Predictions assuming pure reflections (a) and with calibrated attenuation at the free surface with
coefficient 0.6 (b) compared with experiment (c). These correspond to figure 8 at 25 s and show (1/ρ00)∂ρ

′/∂x.
Without attenuation, the predicted amplitude of the wave field behind the hump is larger than observed.
The reflection coefficient accounts for energy dissipated at the free surface through mechanisms not directly
modelled.

processed first with synthetic Schlieren and then with Dynamic Mode Decomposition
(DMD, Schmid 2010). For the cases we consider here, DMD is an ideal tool because
the frequency discretisation is responsive to the input, so it takes many fewer samples
to accurately recover the dominant frequencies compared with Fourier methods, which
project onto basis functions at a fixed discretisation. Furthermore, DMD enables us to
distinguish between steady-state behaviours and transient modes. Our experiments have
been carefully configured so that steady-state behaviours dominate, and we do not observe
the common unsteady phenomenon of triadic resonant instability.

5.2. A series expansion for triadic interactions
Building on the recent developments of Dobra et al. (2021), here we introduce a fusion
of our perturbation expansion framework and the method of solution by Green’s function,
enabling the construction of general wave fields from the interference patterns produced
by a distribution of sources. In Dobra et al., the perturbation expansion at each order
yields the internal wave equation in terms of the streamfunction with sources that are
Jacobian determinants. Under particular symmetries, we found that these sources cancel,
preventing a broad class of wave–wave interactions from occurring. Here, we instead
consider configurations where these sources play a significant role in the structure of
the wave field, and employing the Green’s function with the streamfunction potential,
it integrates naturally. We now outline a generalisation of our perturbation framework for
these arbitrary wave fields.
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We reformulate the conservation of momentum (2.1) and mass (2.3) in terms of
streamfunction, ψ , and buoyancy, b = −gρ′/ρ00,

∂

∂t
∇2ψ +

∣∣∣∣∣∂
(
ψ,∇2ψ

)
∂ (x, z)

∣∣∣∣∣ = ∂b
∂x
, (5.1a)

∂b
∂t
+
∣∣∣∣∂ (ψ, b)
∂ (x, z)

∣∣∣∣ = −N2 ∂ψ

∂x
, (5.1b)

where the Jacobian determinant of two scalars, α and β, is given by∣∣∣∣∂ (α, β)∂ (x, z)

∣∣∣∣ = ∂α

∂x
∂β

∂z
− ∂α
∂z
∂β

∂x
. (5.2)

Eliminating the linear b terms leaves the nonlinear internal wave equation,

∂2

∂t2
∇2ψ + N2 ∂

2ψ

∂x2 =
∂

∂t

∣∣∣∣∣∂
(∇2ψ,ψ

)
∂ (x, z)

∣∣∣∣∣+ ∂

∂x

∣∣∣∣∂ (b, ψ)∂ (x, z)

∣∣∣∣ . (5.3)

Nonlinearity associated with triadic interactions is captured by source terms of the form
of Jacobian determinants, and here we consider their behaviour in the case

ψ =
3∑

j=1

{
Aj exp

(
i
[
kj · x− ωjt

])+ A∗j exp
(−i

[
kj · x− ωjt

])}
, (5.4)

where we require complex conjugate (∗) pairs to represent real wave fields. The source
terms multiply pairs of waves, so we must consider each possible pairing in turn.
Self-interactions equate to zero (McEwan 1973; Tabaei & Akylas 2003; Dobra et al.
2021), but the interaction of beam j = 1 with beam j = 2 produces terms proportional
to exp (i [(k2 + k1) · x− (ω2 + ω1) t]), exp (i [(k2 − k1) · x− (ω2 − ω1) t]) and their
complex conjugates. Thus, by index manipulation we may define

k3 = k2 ± k1, (5.5a)

ω3 = ω2 ± ω1. (5.5b)

Should this disturbance characterised by k3 and ω3 satisfy the dispersion relation (2.7),
ω3 = Nk3/ |k3|, the disturbance is also a wave and the source terms are an eigensolution of
the internal wave equation (2.9). Such combinations are commonly described as resonant
triads.

We examine in figure 10(a) the geometric permutations of wave triad that may be
constructed for a given k1, ω1 and fixed frequency ω2 but where wavevector k2 is
unconstrained. These triangles are compatible with the selection rules derived by Tabaei
et al. (2005) and Jiang & Marcus (2009) that determine into which quadrants, if any,
a new wave beam may be emitted. These configurations are typical of wave beams a
few wavelengths across for which the wavenumber spectra are broad. In these cases, the
spectrum of the source terms is significant across a patch of wavevector space, as shown in
figure 10(b). Wavevectors that lie on the dashed locus of dispersion-relation-satisfying k3
will resonate, and new waves will emerge by mode selection; these correspond to cases
where the triangle of wavevectors can be closed.

No polychromatic solutions containing multiple horizontal phase velocities are known
for the fully nonlinear equation (5.3), so in Dobra et al. (2021), we performed a
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Figure 10. Wavevector triangles for the sum of frequencies ω1 + ω2 in the case ω1 = 0.55 rad s−1 = 0.37N
and ω2 = 1.5ω1. In (a), all permutations of wavevector triangles are presented for the case where k1 points
into the first quadrant. The triangles for all other quadrants are obtained by reflective symmetry. From the
dispersion relation (2.7), each frequency has four possible directions for its wavevector, one in each quadrant.
Given k1, the loci of k2 and k3 will in general close to form a triangle in one of four different ways. A closed
triangle is a resonant triad. In (b), we plot in greyscale the distribution of source term amplitudes in Fourier
space for incident wavevector distributions k1 (blue) and k2 (red). The resonant, propagating k3 lie at the
intersections of each of the dashed lines with regions of significant source amplitude. The remainder produce
a local interference pattern of forced oscillations. In this configuration, two waves at ω3 are emitted: a weaker
one with k3 pointing into the first quadrant (wave propagating down and to the right, triangle marked in orange
in (a)), and a stronger one with k3 pointing into the fourth quadrant (up and to the right, green triangle in (a)).

perturbation expansion to give a recursive algorithm that we can truncate at finite order
to calculate an approximate solution. In this earlier work, we expanded ψ in powers of a
small parameter, a, which we took to be the wave steepness. Instead, here we modify the
expansion to be ψ =∑∞n=1 ψn, where each subsequent term drops an order of magnitude,
and the expansion for b behaves correspondingly. Then, as our earlier work showed, each
order satisfies

∂2

∂t2
∇2ψn + N2 ∂

2ψn

∂x2 =
n−1∑
p=1

{
∂

∂t

∣∣∣∣∣∂
(∇2ψp, ψn−p

)
∂ (x, z)

∣∣∣∣∣+ ∂

∂x

∣∣∣∣∣∂
(
bp, ψn−p

)
∂ (x, z)

∣∣∣∣∣
}
. (5.6)

There is a cascade of information from lower order to higher, but not in reverse, thus
the expansion is purely inductive. However, at all orders greater than three, there are
contributions to frequencies that already exist at lower orders. There is an infinite series
of such contributions to the wave field, some of which manifest as corrections to existing
wave beams (as we will see later in figure 14) but may also generate waves propagating in
new directions. We use the polarisation relation of linear internal waves to calculate b =
N2 ∫ ∂ψ/∂x dt.

5.3. Computational method
We use a method based on integration across finite elements to predict the steady-state
wave field due to two crossing internal wave beams, exploiting the symmetry of the
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complex conjugate to avoid unnecessary execution. In the general case, we use a
calculation domain of 346× 57 elements with aspect ratio one, and incident waves are
produced using an array of sources, following the method in § 4. For these configurations,
we plot (1/ρ00)∂ρ

′/∂z = (N2/g
) ∫
(∂2ψ/∂x∂z)dt.

The source terms to the internal wave equation involve third-order derivatives, and
any errors may propagate across the domain in spurious wave beams. These derivatives
are recursively applied each time we increase the order of the perturbation expansion.
In our calculations, we evaluate the expansion to third order and thus the original field
is differentiated six times. To control numerical noise, we use ghost cells to employ
eighth-order centred finite differences, and we perform one sweep of elliptic smoothing
to eliminate mesh-scale truncation error in these derivatives. We take care to ensure that
there is a separation of length scale between those of the input and those associated with
the mesh, thus the smoothing has negligible effect on derivatives that contribute to the
physics of the system.

Where we look at the detailed physics of wave–wave interactions, we initialise the
streamfunction with idealised waveforms corresponding to magic carpet displacement
profiles,

h = A exp (i [kx− ωt]) cos3
(π

L
x
)

H
(

L
2
− |x|

)
. (5.7)

The amplitude of the wave, A, and the width of the envelope, L, are configured to match
the experiments, which themselves are configured to approximate the asymptotic limit of a
wave beam propagating in a viscous fluid (Hurley & Keady 1997; Sutherland et al. 1999).
However, such waveforms have a broad spectrum including both left- and right-travelling
waves (see Dobra et al. 2019). To produce a unidirectional wave, we nullify Fourier modes
according to their sign and transform back into physical space, a procedure known as the
Hilbert transform (Mercier, Garnier & Dauxois 2008). Then, we project this profile along
the characteristics, using cubic spline interpolation to obtain element-centred values. For
these calculations, we use a grid of 128× 128 elements with aspect ratio that are non-unity.

5.4. Experimental method
We use the same experimental apparatus and diagnostics as § 4. To maximise the
amplitudes of the wave beams without inducing locally separated flow near the magic
carpet, the amplitudes are increased linearly from rest before reaching a steady state. Data
acquisition is performed over two minutes in this steady state. To build on the work of
Tabaei et al. (2005), Jiang & Marcus (2009) and Smith & Crockett (2014), we seek to
examine multiple orientations of incident wave beams and achieve these by exploiting
reflections off the free surface, as shown in figure 11(a).

Here, we use the technique of DMD (Schmid 2010) to identify the temporal modes of a
video sequence. Closely related to proper orthogonal decomposition, the method takes an
observable representation of the system’s state, y, and finds the best-fit system evolution
operator, A, such that dy/dt = Ay when averaged over some period. If Y is composed of
a temporal sequence of column vectors of states y and we let Y = UΣV T be its singular
value decomposition, then Û may denote a truncation of U that only includes modes with
important singular values. Performing an approximate principal axis transformation of A
to the truncated basis Û and then an eigendecomposition of A in the new basis, we have

A ≈ ÛÂÛT = ÛŴ Λ̂Ŵ−1ÛT. (5.8)
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Figure 11. Geometry of wave beams in tank for intersecting two internal waves with the same horizontal
direction and opposite vertical direction of the group velocity. Panel (a) shows our experiment, (b) shows
our corresponding prediction and (c) shows a schematic of all visible wave beams with blue, red, green and
orange corresponding to first-, second-, third- and fourth-order waves, respectively. Beam 1, of frequency ω1 =
0.55 rad s−1 ≈ 0.37N, is generated at the left end of the wave maker, then reflects off the free surface to intersect
beam 2, of frequency ω2 = 2.2ω1. Among others, a triadic interaction generates a third wave beam at frequency
ω2 − ω1 in the grey rectangle, which is the region of interest in subsequent figures. The diagnostic shown is
the vertical gradient of the normalised density perturbation, (1/ρ00)∂ρ

′/∂z.

The dynamic modes are the pairing ÛŴ , and generally they each have distinct complex
conjugate pairs of eigenvalues, whose phases determine their frequencies. They may be
independently evolved in time, but here we plot these modes evaluated at a common time
origin.

5.5. Results and discussion
We begin by comparing our numerical prediction with the output of the synthetic Schlieren
in figure 11 using parameters as given in table 2. We highlight each visible wave beam
schematically in figure 11(c) using the colours blue, red, green and orange to indicate
successive orders of the perturbation expansion in § 5.2. Specifically, components at first
order comprise the two primary input beams at frequencies ω1 and ω2, while at second
order we have triadically generated beams at frequencies 2ω1 and ω2 − ω1. Here, we note
that 2ω2 and ω2 + ω1 are evanescent disturbances that contribute to the second-order field,
but do not manifest as wave beams.
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Figure 11 12 13 14 15

N (rad s−1) 1.50 1.47 1.47 1.41 1.48
ω1 (rad s−1) 0.55 0.55 0.55 0.4 0.8
k1 (rad m−1) 39 26 36 48 80
A1 (mm) 2.8 1.8 1.4 1.8 2.6
L1 (m) 0.42 0.34 0.25 0.30 0.12
ω2 (rad s−1) 1.21 1.21 0.825 1.2 1.2
k2 (rad m−1) 121 110 75 −40 100
A2 (mm) 1.8 1.7 1.4 4.2 2.4
L2 (m) 0.26 0.18 0.15 0.14 0.11

Table 2. Parameters for each configuration considered, as defined by (5.7).

Our priority is to examine wave–wave interactions, and while there are many in this
figure, the principal interaction zone is outlined by the grey box. Since this will be
our region of focus for subsequent results, we take care to optimise the wave field
geometry for diagnostic quality in this region. For our prediction to match well, we
account for experimental artefacts such as weak viscous spreading of wave beams and
some unavoidable curvature in the stratification near the top and bottom boundaries,
so we make small perturbations to waves generated on the synthetic wave maker to
ensure that waves incident to the boxed region have beam widths and amplitudes that
match the experiment. Given comprehensive frequency-decomposed post-processing of
experiments, we are able to perform a thorough calibration of the transmission efficiency
from order to order. We find by line-search optimisation that it takes a globally constant
value of ∼ 1

2 across all interactions and all experiments. It remains an open question why
the perturbation expansion requires such order-to-order calibration, but by matching our
hierarchical decomposition with suitably post-processed experiments, we have identified
a discrepancy that could not have been anticipated in advance.

In the primary interaction zone, two significant new waves are emitted up and to the
right: one at second order (shown in red in figure 11c) of frequency ω2 − ω1 due to
the interaction of beam 2 with beam 1, and the other at third order (shown in green) of
frequency ω2 − 2ω1 due to the interaction of the first additional wave with beam 2. Where
the reflections of both beams 1 and 2 intersect, we note an interference pattern leads to a
distortion of the phase lines in the bottom-right corner of the grey box.

The left-hand end of the magic carpet, just outside our diagnostic field of view in the
experiment (and replicated in the numerical prediction), also emits a second harmonic for
beam 1, which reflects off the free surface before interacting with its fundamental beam.
From this interaction, an additional wave of frequency ω1 (shown in green in figure 11c)
is emitted though here its direction is down and to the right. This beam reflects off the
bottom boundary and also happens to intersect the primary interaction zone. Since the
second harmonic is present only at second order (Dobra et al. 2021), this additional ω1
beam is third-order, so for a prediction truncated at third order, we do not include any of
its interactions with other wave beams. Also visible in the experiment is a fourth-order
zero-frequency wave (shown in orange) arising from the interaction of the first- and
third-order waves of frequency ω1. While strictly zero-frequency modes have no phase
propagation, they closely resemble gravity currents generated by transient irreversible
displacement of mass. Indeed, these also form near the bottom boundary, and we attribute
this small aberration to boundary-layer mixing.
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On its third reflection, the second harmonic of ω1 intersects its fundamental once more,
this time just after its own reflection off the free surface. We calibrate the strength of
reflections in our predictions to account for surface wave transmission away from reflection
sites, and we find an absorption coefficient of 30 %. Furthermore, evaporative cooling
acts to smooth the top interface, which in turn creates complex reflection geometries; we
account for these by applying a phase shift and a higher absorption coefficient of 55 % to
beam 1 only.

In figure 12 for a similar configuration, we expand out all the wave contributions at
each order and frequency, and compare with the DMD of the experiment. We restrict the
viewing window to the grey box in figure 11. The first row contains the superposition of all
the wave beams at each order of truncation. At first order, there are no interactions, so we
have only the linear superposition of incident waves. At second order, we obtain by triadic
interactions a new pair of frequencies, ω2 − ω1 and ω2 + ω1.

Eight triads are possible at third order, formed from each combination of a first-order and
a second-order wave, and in each combination both difference and sum of frequencies may
emerge. Four of these triads produce new frequencies, meanwhile there is a pair of triads
from which will emerge new contributions to ω1 and a corresponding pair for ω2. The
triads for ω1 are− (ω2 − ω1)+ ω2 and (ω2 + ω1)− ω2, and for ω2, they are (ω2 − ω1)+
ω1 and (ω2 + ω1)− ω1. For the configuration in this figure, these contributions are present
but very weak and must not be confused with the third-order ω1 wave in the bottom-left
that, similarly to figure 11, arises from the interaction of 2ω1 and ω1 well to the left of
the viewing window; we verified the wave direction in the experiment using the Hilbert
transform. We also note that at third order, there are neither contributions to ω2 − ω1 nor
ω2 + ω1; such additional contributions only appear from fourth order onwards.

Of the new frequencies generated at third order, only ω2 − 2ω1 has appreciable
amplitude. This propagating wave bends on the boundary of the interaction zone, because
dominant wavevectors in the source terms do not satisfy the dispersion relation so the
associated modes are confined as forced oscillations, meanwhile the slightly weaker
resonant modes are preferentially selected and propagate away from the interaction zone.
We also note other artefacts visible in both the experiment and the prediction at this
frequency. The other three new frequencies are evanescent and are too weak to have
significant singular values when computing the DMD, so we represent these missing
modes by boxes with dashed borders.

As noted by Bourget et al. (2014), the amplitudes of new propagating waves, such
as ω2 − ω1, grow linearly across the interaction zone where the source terms are
large. Outside this zone, propagating over an area with insignificant sources, they have
approximately constant amplitude. Conversely, forced oscillations have amplitudes that
are proportional to the local source terms. In this example, ω2 + ω1 > N and produces
weak evanescent modes that decay exponentially with distance from the interaction zone,
so we amplify its images by a factor of ten. We see a second generation zone of this mode
where the reflection of ω2 intersects ω1 again in the bottom-right of the domain.

Figure 13 is similar to the previous two cases, but configured such that ω2 +
ω1 < N. This mode is emitted to the right both upwards and downwards, but the
upwards-propagating mode is stronger and noticeably reflects several times within our
field of view, thus the configuration is dense with opportunities for third-order interactions
in the right half of the image. One such interaction is the broad addition to ω2 in the
bottom-right corner, and there is a corresponding beam at ω1 in the top-right corner.

Due to our choice here of ω2 = 1.5ω1, some frequencies are duplicated by multiple
modes. In particular, |ω2 − 2ω1| = ω2 − ω1, but geometrically the wavevectors cannot
organise to form a contribution from ω2 − 2ω1, consistent with the selection rules of
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Figure 12. Hierarchical decomposition of the internal wave field where ω1 ≈ 0.37N and ω2 = 2.2ω1. We plot
the real part of evolutionary modes of the diagnostic, (1/ρ00)∂ρ

′/∂z, and for reference mark the parallelogram
where the incident waves cross with dotted lines. At first order in the expansion, we only obtain the incident
waves. At second order, we obtain ω2 − ω1 and ω2 + ω1. At third order, we not only obtain four new
frequencies, but we obtain new contributions to ω1 and ω2 that in this configuration are small in amplitude
but broaden the wave beams. There are no further contributions to ω2 − ω1 and ω2 + ω1 until fourth order.
The final column compares with DMD, and the dashed grey boxes indicate where experimental noise obscured
the frequency from detection. We do not constrain the DMD to deliver prescribed frequencies; the best-fit
modes are always returned.

Tabaei et al. (2005) and Jiang & Marcus (2009). In addition, a reflection of the second
harmonic of beam 1 passes close to the interaction zone, and its interaction with beam 2
near the left vertex of the main interaction zone also produces two waves at ω2 − ω1,
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Figure 13. Hierarchical decomposition of the internal wave field where ω1 ≈ 0.37N and ω2 = 1.5ω1. We plot
the real part of evolutionary modes of the diagnostic, (1/ρ00)∂ρ

′/∂z, and for reference mark the parallelogram
where the incident waves cross with dotted lines. Here, ω2 + ω1 < N, so new waves can be emitted. This
corresponds to the geometry presented in figure 10, and we see that these waves are emitted in two directions. In
this case, several frequencies are duplicated by contributions from multiple sources; in particular, |ω2 − 2ω1| =
|ω2 − ω1|. Other duplicates arise from the second harmonic of beam 1, which first appears at second order and
just misses the main interaction zone. The final column compares with DMD, and the dashed grey boxes
indicate where experimental noise obscured the frequency from detection.

which propagate in each of the downward directions. Although the dominant components
of 2ω1 and ω1 have a common horizontal phase velocity and thus have a symmetry that
prevents them from interacting (Dobra et al. 2021), each wave beam is monochromatic in
frequency but has a broad wavenumber spectrum, so provided we satisfy the geometric
selection rules, a full spectrum of resonant modes will still be generated. Moreover,
2ω1 has third-order interactions with ω1 and ω2, but the only appreciable contribution is
2ω1 + ω1 = 3ω1. One component of this signal is a weak evanescent second harmonic
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of beam 2, visible in the bottom-left corner, and appears here because 2ω2 = 3ω1 by
construction. However, the dominant signal in the DMD mode at 3ω1 is a forced oscillation
associated with beam 2, and we do not consider this mechanism in our model, so a direct
comparison cannot easily be drawn.

In numerous places, our experiment demonstrates the presence of yet higher-order
interactions. Firstly, in the bottom-right corner of the ω2 − ω1 panel, there is a broadening
of this wave beam that appears analogous to the previously noted third-order contributions
to ω1 and ω2. This contribution may be generated by a fourth-order interaction between ω1
and the ω2 − ω1 component that is itself generated by the second harmonic, 2ω1, and its
fundamental, ω1. Secondly, the DMD at 2ω2 − ω1 exhibits waves originating in the main
interaction zone. We do not predict them at third order, but do expect to find them at
higher orders. Although our prediction of their amplitudes is poor, we do capture elements
of their structure. We also note that in the top-right corner, we have successfully predicted
the third-order interaction (ω2 − ω1)+ ω2.

In the following figures, we select some interesting alternative geometries. Figure 14
considers the interaction of left- and right-running waves, and figure 15 considers incident
waves from the same quadrant that interact obliquely.

With waves in opposite horizontal directions, we have the opportunity to maximise
the interaction strength by choice of frequencies. The source terms arise from the u · ∇
advection operators in the governing equations (2.1) and (2.3). The velocity, u, points
along the wave beam, meanwhile all gradients are perpendicular to the beam. In the case
where the two beams are orthogonal, u of one beam is aligned with the gradient vector
of the other, and thus the source terms will be maximal. In figure 14, we demonstrate a
near-orthogonal configuration with the additional property that the dominant k2 − k1 is
near-resonant.

Due to these strong interactions at second order, we have a clear view of the third-order
contributions to ω1. These broaden the beam significantly, introduce a distortion of the
phase and slightly increase the amplitude. In addition, the second harmonic of beam 1
has frequency ω2 − ω1 and appears in the top-left corner, which interacts with its
fundamental beam to produce third-order forced oscillations at ω1 whose wavevectors do
not align with those of beam 1. Of the remaining contributions to ω1, we distinguish
between the following permutations: the standard pairings of − (ω2 − ω1)+ ω2 and
(ω2 + ω1)− ω2, and an additional possible interaction, (ω2 − ω1)− ω1, whose frequency
coincides with ω1 in this configuration. It turns out that the additional interaction produces
a wave that propagates down and to the left, whereas the standard pairings produce waves
that propagate in the same direction as beam 1 and are responsible for broadening the
beam. Given this clarity, we revisit the ω1 and ω2 panels in figures 12 and 13, and we
note that the DMD shows clear distortion of ω2. Although we underpredict the additional
ω2 contribution, further numerical investigations have confirmed that this third-order
contribution is primarily responsible for the observed distortion of phase. Other less
significant factors are due to slight curvature of the stratification, which causes waves
to refract.

Returning to figure 14, at third order in ω2, a weak wave is emitted down and to the left,
which we have determined from source terms must arise from the interaction (ω2 − ω1)+
ω1. Furthermore, the ω2 − ω1 beam is broader than the main interaction zone in a manner
analogous to the broadening of ω1, and we attribute this to higher-order contributions.

It is of interest that the wavevector of the signal in the top-right of the ω2 − ω1
experimental image is not aligned with the direction given by the dispersion relation, so
we conclude that these are forced oscillations. Since no other wave beams intersect beam 1
in this region, we deduce that these forced oscillations must be driven by the interaction of
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Figure 14. Decomposition of the internal wave field where ω1 ≈ 0.28N and ω2 = 3ω1. We plot the real part
of evolutionary modes of the diagnostic, (1/ρ00)∂ρ

′/∂z, and for reference mark the parallelogram where the
incident waves cross with dotted lines. We notice in particular distortion of phase lines of ω1 due to third-order
contributions. For completeness, we include the second harmonic of ω1, since this has the same frequency as
ω2 − ω1.

beam 1 with itself, but a single inviscid wave cannot self-interact because its gradients are
strictly normal to its velocities. If a process, such as viscous spreading of the wave beam,
were to cause the direction of some wavevectors to vary, triadic interactions would then be
possible. We consider the sum of two modulated modes. Should the variations in direction
be small, the wavevectors of the sources must point approximately in the direction of
2k1, and thus these wavevectors would be narrowly distributed about the resonant locus
at the fundamental frequency, ω1, represented by a straight line through the origin. These
wavevectors would not intersect the resonant locus of the second harmonic, which is also
a straight line through the origin but has steeper gradient, and thus no propagating waves
would be emitted at 2ω1. We hypothesise that such viscous mechanisms are responsible
for these features, and in general, these are likely to be strongest close to the magic carpet.

934 A33-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1115


T.E. Dobra, A.G.W. Lawrie and S.B. Dalziel

All

modes

ω1

mode

ω2

mode

ω2 – ω1

mode

0.60 0.65 0.70

m

0.75 0.80 0.60 0.65 0.70

m

0.75 0.80

Prediction to third order

–0.1 0.10 m–1

Experiment

ω2ω1

Figure 15. Decomposition of the internal wave field where ω1 ≈ 0.54N and ω2 = 1.5ω1. We plot the real part
of evolutionary modes of the diagnostic, (1/ρ00)∂ρ

′/∂z, and for reference mark the parallelogram where the
incident waves cross with dotted lines. We observe that beams 1 and 2 exhibit broadening at third order.

Indeed, in the 3ω1 DMD mode of figure 13, we notice the same feature and attribute
viscous action to its appearance.

Figure 15 shows an oblique interaction where the ω2 − ω1 beam is emitted back into
the same quadrant from which the incident waves originate. Once again, the interactions
are strong, and we successfully capture third-order beam-broadening contributions to both
ω1 and ω2. Furthermore, we find shifts in phase to the left of the main interaction zone
at both ω2 and ω2 − ω1, and a propagating beam down and to the right at ω2 − ω1. This
frequency includes both second- and third-order effects because again ω2 = 1.5ω1. In the
top-left of the DMD mode at this frequency, there is another weak wave that we attribute
to a higher-order interaction. Finally, we remark that in this experiment, it turned out that
there was a smooth, weak variation in buoyancy frequency from top to bottom.
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6. Conclusions

We have developed a robust hierarchically organised prediction tool for arbitrarily complex
two-dimensional internal wave systems and contend that this is a necessary and sufficient
model for determining the structure of wave–wave interactions near the inviscid limit. In
this work, we introduce for the first time the fusion of a weakly nonlinear perturbation
expansion with a semi-analytical implementation of the monochromatic free-space
Green’s function for the governing equation. Our method has indeed been shown to
accurately recover the structure of wave–wave interactions, showing a remarkable level
of agreement between our experiments and our method. Having carefully validated our
approach using frequency-decomposed post-processing, we have now been able to identify
wave–wave interactions up to third order by direct comparison and infer the origins of other
features observed in experiments that must arise from higher orders or from secondary
effects. This unparalleled access to individual components and isolation of interaction
behaviour provides clarity to the mechanisms in the system, and we have attempted
to explain with reference to the weakly nonlinear perturbation expansion previously
unnoticed physical features, such as forced oscillations that share a frequency with other
waves but do not satisfy the dispersion relation for a wave to form. Furthermore, we have
strong evidence of a previously undiscovered open question regarding the order-to-order
transmission efficiency of wave–wave interactions.

As necessitated by our choice of experimental validation, we have already generalised
our approach to aperiodic configurations and arbitrary time dependence. With careful
consideration of causality, we have also provided our calculations for a range of boundary
conditions for two field potentials so that our free-space source implementation is suitable
for bounded flows and, in particular, for our case that includes a flexible boundary. We
have configured our implementation to be minimally elaborate while remaining causal.

We remark that there is no particular restriction to systems of internal waves. Our
hierarchical decomposition is equally valid for any system for which a Green’s function
may be obtained. These include gravito-inertial systems, Rossby waves and some aspects
of nonlinear acoustics. Further generalisations we envisage could include solving the
linear inverse problem to determine suitable source strengths equivalent to a boundary
displacement computed from data observed at a distance. Our experimental and numerical
study has already led us to new insights on specific systems, and we anticipate the approach
will be adopted for a much broader range of problems in the imminent future.
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Appendix A. Derivation of monochromatic Green’s function

Repurposing the method of Hurley (1972, 1997), we first calculate the Green’s function
for evanescent oscillations at ω > N, then analytically continue it to other values of ω.
Defining the transformed coordinates to perform a dilatation,

[
x
z

]
�→
[

xα
zα

]
=
[ x
Γ
z

]
, (A1)
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Figure 16. Branch points, shown with crosses, and branch cuts, shown with wiggly lines, for analytic
continuation in ω. The five branch points are all on the real axis and the branch cut must be in the lower
half-plane to satisfy causality.

the point-forced internal wave equation (3.3) becomes Poisson’s equation in the new
coordinate system for ω > N,

∂2Gω
∂x2
α

+ ∂
2Gω
∂z2
α

= −
δ
(

xα − x0

Γ

)
δ (zα − z0)

Γ ω2 . (A2)

Thus, Gω is proportional to the corresponding free-space Green’s function,

Gω = C − log
(
r2)

4πω2Γ
, (A3)

where r2 = (x− x0)
2 /(1− (N/ω)2)+ (z− z0)

2 and C is the integration constant, which
is a gauge freedom that we take to be zero.

We now extend Gω to be valid at all frequencies using analytic continuation in complex
ω space. The logarithm has branch points at r2 = {0,∞}, which rearranges to

1−
(

N
ω

)2

=
{
−
(

x− x0

z− z0

)2

, 0

}
, (A4)

and thus the logarithm has four branch points,

ω =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
± N√

1+
(

x− x0

z− z0

)2
,±N

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (A5)

In addition, 1/Γ has three branch points, ω = {0,±N}, so, in total, there are five distinct
branch points, as marked in figure 16. Those at ω = ±N correspond to the regime change
from evanescent to propagating internal waves. The branch points all need joining with
branch cuts, which we chose carefully to provide physically realisable conditions. Since
any steady-state internal wave must have grown from a stationary ambient at some time
in the past, we assume that the wave is in fact growing exponentially slowly in time and
so Im{ω} > 0 (Lighthill 1960). Thus, we deform all the branch cuts to below the real line;
these are shown by the wiggly lines in the figure.

To perform the analytic continuation, we consider the complex arguments of the square
root in Γ and of the logarithm. For complex ω = ωr + iε with real part ωr and a small
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Im
1

Γ2

Re
1

Γ2

Figure 17. Analytic continuation path of 1/Γ 2 for decreasingω around 0. In order to satisfy causality, Im{ω} ≥
0, so the path shown is obtained by deforming ω into the upper half-plane. The quantity 1/Γ 2 is real and
negative around ω = 0, but the argument of 1/Γ changes from −π to +π.

imaginary part ε, we make the expansion

1
Γ 2 =

1

1−
(

N
ωr + iε

)2 =
ω2

r
(
ω2

r − N2)+ (2ω2
r + N2) ε2 + ε4 − 2iN2ωrε(

ω2
r − N2 − ε2

)2 + 4ω2
r ε

2
. (A6)

The denominator is always positive and ε ≥ 0, so sgn(Im{1/Γ 2}) = −sgn(Re{ω}).
When ω > N and is real, the complex argument, arg (r2) = 0. On proceeding around

the first branch point at ω = N, where r2 becomes infinite, Im{1/Γ 2} < 0, so Im{r2} < 0.
Thus, arg (r2) decreases to become−π for N(1+ ((x− x0) / (z− z0))

2)−1/2 < ω < N; in
other words, r2 increases from −∞ to zero between these branch points. As ω decreases
further, the term (x− x0)

2 /(1− (N/ω)2) becomes less significant, such that r2 becomes
positive real again after the next branch point, N(1+ ((x− x0) / (z− z0))

2)−1/2, with
its argument yet to be determined. Since Re{ω} > 0, we have Im{1/Γ 2} < 0 and hence
Im{r2} < 0, so arg (r2) increases around the branch point to become zero for −N(1+
((x− x0)/(z− z0))

2)−1/2 < ω < N(1+ ((x− x0)/(z− z0))
2)−1/2. The frequency, ω, is

now negative for the remaining two branch points of the logarithm, so the analytic
continuation is in the upper half-ω plane. Therefore, arg (r2) = +π for −N < ω <

−N(1+ ((x− x0)/(z− z0))
2)−1/2 and zero for ω < −N. Thus, Re{r2} exhibits even

symmetry about ω = 0 but arg (r2) has odd symmetry. The value of the logarithm can
now be determined using the standard formula,

log
(

r2
)
= log

∣∣∣r2
∣∣∣+ i arg

(
r2
)
. (A7)

Next, we consider the three branch points of 1/Γ . For ω > N, its complex argument is
zero. Proceeding round the first branch point, at ω = N, arg (1/Γ 2) decreases to −π, so
arg (1/Γ ) = −π/2 and 1/Γ = −i((N/ω)2 − 1)−1/2 for 0 < ω < N. The second branch
point is at ω = 0. When ε > 0, Im{1/Γ 2} = 0 only when Re{ω} = 0. At this point,
Re{1/Γ 2} = ε2/(N2 + ε2) > 0, despite being negative when ω is significantly away from
zero. Thus, the analytic continuation path in complex 1/Γ 2 space goes anticlockwise
around the branch point, as shown in figure 17. So, arg (1/Γ 2) = +π for −N < ω < 0,
thus 1/Γ changes sign at ω = 0. At the final branch point, ω = −N, Im{1/Γ 2} > 0, so its
argument decreases from +π to zero.

The assembled Green’s function for each case is listed in table 3.
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Range of ω Argument of Green’s function

r2 1
Γ

ω > N 0 0 −

log

⎛
⎜⎜⎜⎝ (x− x0)

2

1−
(

N
ω

)2 + (z− z0)
2

⎞
⎟⎟⎟⎠

4πω2

√
1−

(
N
ω

)2

N√
1+

(
x− x0

z− z0

)2
< ω < N −π −π

2
i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log

⎛
⎜⎜⎜⎝ (x− x0)

2(
N
ω

)2

− 1

− (z− z0)
2

⎞
⎟⎟⎟⎠− iπ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

4πω2

√(
N
ω

)2

− 1

0 < ω <
N√

1+
(

x− x0

z− z0

)2
0 −π

2
i

log

⎛
⎜⎜⎜⎝− (x− x0)

2(
N
ω

)2

− 1

+ (z− z0)
2

⎞
⎟⎟⎟⎠

4πω2

√(
N
ω

)2

− 1

− N√
1+

(
x− x0

z− z0

)2
< ω < 0 0 +π

2
−i

log

⎛
⎜⎜⎜⎝− (x− x0)

2(
N
ω

)2

− 1

+ (z− z0)
2

⎞
⎟⎟⎟⎠

4πω2

√(
N
ω

)2

− 1

−N < ω < − N√
1+

(
x− x0

z− z0

)2
+π +π

2
−i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log

⎛
⎜⎜⎜⎝ (x− x0)

2(
N
ω

)2

− 1

− (z− z0)
2

⎞
⎟⎟⎟⎠+ iπ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

4πω2

√(
N
ω

)2

− 1

ω < −N 0 0 −

log

⎛
⎜⎜⎜⎝ (x− x0)

2

1−
(

N
ω

)2 + (z− z0)
2

⎞
⎟⎟⎟⎠

4πω2

√
1−

(
N
ω

)2

Table 3. Monochromatic Green’s function, including results of analytic continuation, for all cases of ω. An
integration constant can be added onto the Green’s function, but this does not affect derived quantities such as
the velocity, so without loss of generality we take it to be zero.
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