A COSINE FUNCTIONAL EQUATION IN HILBERT
SPACE

SVETOZAR KUREPA

Throughout this paper R denotes the set of all real numbers, m(K) the
Lebesgue measure of K € R, H a Hilbert space, L(H) the set of all linear
continuous mappings of H into H, endowed with the usual structure of a Banach

space.
We consider the mapping F of the set R into L(H) such that
1) Floe +3) + Flx —y) = 2Fx)F(y)

holds for all x, ¥ € R. In (2) we have solved this equation under the assumption
that H is of finite dimension. In this paper we prove that a weak measurability
of F implies its weak continuity in the case of separable Hilbert space. In
Theorem 2 we prove that every weakly continuous solution of (1) in the set
of normal transformations has the form F(x) = cos (xNV), where the normal
transformation N does not depend on x.

We start with a preliminary lemma.

LemMMA 1. Let K be a linear Lebesgue measurable set such that 0 < m(K) <
+ . There exists a number a > 0 with the property that for every x € (— a, a)
there are s1(x), sa(x), s3(x) € K such that s;(x) = sa(x) — x/2 = s3(x) — «.

Proof. Let u(x) be the function defined on the set of all real numbers R by
the equation #(x) = m(K N (K — x/2) N\ (K — x)). If x() denotes the
characteristic function of the set K then

[u(x) — u(0)] = [[x@Ox(t + x/2)x(t + x) — xOx(t + x)
+ x(Ox(t + x) — x(0)]dt |
< JIx(t + x/2) — x@)ldt + [Ix(t + %) — x(8)|dt.

Since the right side tends to zero as x — 0 we find the function #(x) con-
tinuous in x = 0. Since #(0) = m(K) # 0, there exists a constant @ > 0 such
that u(x) # 0 for all x € (— a, a). But u(x) & 0 implies K N (K — x/2) N
(K — x) £ ¢. Hence for each x € (— a, a) there are s;(x), s2(x), s3(x) € K
such that s;(x) = s2(x) — x/2 = s3(x) — x and hence Lemma 1 is proved.

THEOREM 1. Let F be a mapping of R into L(H) which satisfies (1) for every
x, v € R.

Suppose that: (1) there is an interval I = [a, b] S R such that the restriction
of F to I is weakly measurable;
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(2) if F(x)f = 0, almost everywhere, then f = 0; (3) H is a separable Hilbert
space.
Then F is weakly continuous on R.

Proof. We divide the proof into three parts.

1. The function F is measurable on R. (1) implies:

o152 - sror59) - o4 252).

When «x runs through the interval [a, L(a + )] then x + (b — @) runs over
the interval [3(a + b), b]. Since F(y) is measurable on each of these intervals
we find that F(y) is measurable on the interval [a — (& — a), a]. Thus, the
measurability of the function F on the interval I implies the measurability
of this function on the interval I’ = [¢ — 3(b — a), b]. The way by which I
is obtained from I enables us to deduce that the function F is measurable
on the set (— «, ). For x = 0 (1) implies that F is an even function. Thus
the function F is measurable on the set of all real numbers.

2. The function F is locally bounded. The separability of H implies
immediately that x — ||F(x)|| is a measurable function, hence there is a
measurable set K C R of strictly positive measure such that L = sup || F(x)]]|
< + =, (x € K). We assert that ||F(x)|| is bounded on every finite interval.
Since the function F is an even function we can, without loss of generality,
assume that K C [0, +»]. If we put x + y instead of y in (1) we get:
F(x) = 2F(x + y)F(y) — F(x + 2y). This implies:

2) HF@I < 20lF@ + - [[FDI + [[F& + 29)]].
For x = y (1) implies: F(2x) = 2F*(x) — E and this gives:

(3) FEo|| < 20|F@II* + 1.

From (2) and (3) we get:

4) HF@I < 2([FC 4+ nI - IFDI + 2(1F& + 30l + 1.

According to Lemma 1 there exists a number @ > 0 with the property that
for every x € (0, @) a number y can be found such thaty, y + %x,y + x € K.
If x € (0,a) and if y is the corresponding element of K then (4) implies:
{|F(x)]| < 4L? 4 1 for every x € (0, a). Thus the function || F(x)|| is bounded
on the interval (0,a). This and (3) imply that ||F(x)|| is bounded on the
interval (0, 2a). From this we infer that the function ||F(x)|| is bounded on
every finite interval of the type (0, b), (b > 0). Since F is an even function
we have that it is bounded on every finite interval.

3. The function F is weakly continuous. Since the function F(x) is
measurable and locally bounded, the functional
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&) [ s 0 as

is a bounded linear function on H for any @, b € R and g € H. There is,
therefore, a unique element g,, € H such that:

J s 0 dx = (g

for every f € H. Let H' denote the set of all g,,. We assert that H’ is dense
everywhere on H. In fact, let # € H, h 1. H’, that is, let

b
©) [ @ g ax =0
for all g € H and for all numbers a and b. For given, but arbitrary g, (6)
implies:
() (F(x) h,g) =0
for x ¢ S, where mS, = 0. Let 4 = {gi, go, g3, .. .,} be a countable set dense
in H and let
S = U Sﬂn
n=1

According to (7) we have

(8) (F(x)h, gn) = 0

for all x ¢.S. Since 4 is dense in H (8) implies F(x)k = 0 for every x ¢.S,
that is, almost everywhere. The requirement of Theorem 1 implies 2 = 0,

that is, the set H' is dense in H.
If we put 2F(y)f instead of f in (5) and if we use (1) we find:

bty b—y
) 20 ) = [ F@h o+ [ (Pwy 0 dx
a+y a—y
If y, tends to y,, then (9) implies: (F(vi)f, h) — (F(vo)f, h) for every h € H'.
Since the sequence F(y;)f is bounded and since H’ is dense in H we find
for each pair f, g € H, that is, F(y;) tends weakly to F(y,) whenever 1y
tends to ¥o. This proves that F is weakly continuous. Q.e.d.

THEOREM 2. Let N(x) be a mapping of R into L(H) which satisfies (1) for
every x,y € R.

Suppose that: (1) N(x) is a normal transformation for every x € R; (2) if
N(x)f = 0, almost everywhere, then f = 0; (3) N(x) is weakly continuous.

Then a bounded self-adjoint transformation B and self-adjoint transformation
A which commutes with B can be found in such a way that

N(x) = 3[exp (1xN) 4+ exp (— ixN)] = cos (xN)

holds for all x where N = A + 1 B.
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Proof. 1. As in Theorem 1 we have

J @t e e = ().

We assert that the set H' of all g, is dense in H. In fact if & is an element
of H which is orthogonal on H’, then (6) holds for all a,b € R and g ¢ H.
The continuity of function (N (x)f, g) together with (6) imply (7) for every
x € R and for every g € H. From here we get N(x)kA = 0 for all x which
implies # = 0. Thus the set H' is dense in H. Using (1) we obtain:

N — E i v
(M f, gab> - 51; [I; (N (w)f, g) du + Jb (N (w)f, g) du

X

a+r a—2
[ [T e ]

which 1mplies:

lim (L(’C);_—Ef, gab> =0

r—0

for every g,, € H' and for every f € H. From here it follows that the sequence

() = E
X

h

converges weakly to zero for every & € H’', when x — 0. There exists, there-
fore, a number M (k) such that:

HIN@™) — Elh]| < 27" M (h).

This implies that the series

(10) > Ve - Eni

is convergent for every & € H'.

II. The fact that N(x) is an even function implies that N(x) and .V (y)
commute one with another for every couple of real numbers x and y. Now
we consider the functional equation (1) only for x and y from the set

G={rlr=2""%1k=0,=+1,+2, ...}

Since G is countable and since N(r) and N (') (r, 7" € G) commute we find
(4, p. 67),

(11 NG = f & NE(AY)

where E(A) is a real spectral measure and the function f(, r) is E(A)-measur-
able and finite everywhere for every » € G. If we put (11) in (1) we get:

(12) JEr+7) +fE —n) =20 NfE )
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for all »,7 € G and for almost all ¢ (G is countable!). Using (11) we can
write (12) in the form:

tim [ 3 176,27 — 1P[E@oMT:

n—co

From the above it follows that the series

(13) > 2 - 1f

is convergent almost everywhere with respect to the measure ||E(A)%|[% Since
the set H' is dense in I the series (13) is convergent almost everywhere
with respect to E(A). Thus

(14) J 2 —1
almost everywhere with respect to E(A). It follows from (14) and (12) that
(15) J& r) = 3lexp irg(§) + exp (— ir¢(£))]

hold true almost everywhere in ¢ and for all r € G (see (2, Lemma 4)). Here
¢ (£) is E(A)-measurable and everywhere finite complex-valued function. Thus
the transformations

(16) N = [ s@B@0, 4 = fR [Red()]E(Ag) and B = f [Ime®)]EQy)

are defined. Since

N = esssup [f(5, ] < + =
for every r € G, we find:
esssup [Im ¢(§)] < + =,
that is, the transformation B is bounded. Then (16), (15), and (11) imply:
N(r) = 3lexp (irN) + exp (— N)] = cos (rN)

for every 7 € G. By the weak continuity and the fact that the set G is dense
on R we find: N(x) = cos (xNV) for every x € R.

Remark 1. If we consider a mapping » — N (7) of the set G in the set L(H)
such that:

(1) N(r) is a normal transformation;

2) Nr+7)+ N@' —r) =2N@)N(@') for all 7,7’ € G, and

(3) lim ||[N(1/2") — E|| =0
then N(r) = cos (rN), where normal transformation N does not depend on
r. Indeed the representation (11) holds in this case too. Since ||[N(r)|| = ess

sup |f(& 7)| (14) also holds. This together with (11) leads to (12) and conse-
quently to (15), from which N(r) = cos (rN) follows.

https://doi.org/10.4153/CJM-1960-005-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1960-005-7

50 SVETOZAR KUREPA

REFERENCES

1. R. Phillips and E. Hille, Functional analysis and semigroups, Amer. Math. Sci. Coll. Pub.
(1957).

2. S. Kurepa, 4 cosine functional equation in n-dimensional vector space, Glasnik mat. fiz. 1
astr., 13 (1958), 169-189.

3. — On the (C)-property of functions, Glasnik mat. fiz. i astr., 13 (1958), 33-38.

4. B. Sz. Nagy, Spektraldarstellung Linearer Transformationen des Hilberschen Raumes (Berlin,
1942).

Department of Mathematics, Zagreb

https://doi.org/10.4153/CJM-1960-005-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1960-005-7

