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UPPER BOUNDS FOR THE MAXIMUM OF
A RANDOM WALK WITH NEGATIVE DRIFT
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Abstract

Consider a random walk Sn = ∑n
i=0 Xi with negative drift. This paper deals with upper

bounds for the maximum M = maxn≥1 Sn of this random walk in different settings of
power moment existences. As is usual for deriving upper bounds, we truncate summands.
Therefore, we use an approach of splitting the time axis by stopping times into intervals
of random but finite length and then choose a level of truncation on each interval. Hereby,
we can reduce the problem of finding upper bounds forM to the problem of finding upper
bounds for Mτ = maxn≤τ Sn. In addition we test our inequalities in the heavy traffic
regime in the case of regularly varying tails.
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1. Introduction and statement of results

Let {Sn, n ≥ 0} denote the random walk with increments Xi , that is,

S0 := 0, Sn :=
n∑
i=1

Xi, n ≥ 1.

We shall assume thatX1, X2, . . . are independent copies of a random variableXwith distribution
function F and a := −E[X] > 0. The random walk Sn drifts to −∞ and the total maximum
M := maxk≥0 Sk is finite almost surely. The random variable M plays a crucial role in a
number of applications. For example, its distribution coincides with the stationary distribution
of the queue length in simple queueing systems. Another important application comes from
the mathematics of insurance: under some special restrictions on X the quantity P(M > u) is
equal to the ruin probability in the so-called renewal arrivals model.

The tail behaviour of M has been studied extensively in the literature. The first result goes
back, apparently, to Cramér and Lundberg (see, e.g. Asmussen [2]): If

E[eh0X] = 1 for some h0 > 0, (1)

and, in addition, E[Xeh0X] < ∞, then there exists a constant c0 ∈ (0, 1) such that

P(M > x) ∼ c0e−h0x as x → ∞.
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1132 J. KUGLER AND V. WACHTEL

The case E[Xeh0X] = ∞ has been considered recently by Korshunov [12] and the way in which
a high value in this setting is attained was studied later by Foss and Puhalskii [7].

If (1) is not fulfilled, then one assumes that the distribution ofX is regular in some sense. To
specify what regular means we recall some definitions and known properties. For their proofs
we refer the reader to [9]. Consider a distribution function B on R and let B̄(x) = 1 − B(x)

be the right tail of B. A distribution function B with support R+ is called subexponential, if
B̄(x) > 0 for all x and

lim
x→∞

¯B∗n(x)
B̄(x)

= n (2)

for all n ≥ 2, whereB∗n(x) is the n-fold convolution ofB with itself. For the subexponentiality
it is sufficient to verify the equation (2) in the case n = 2. All subexponential distributions are
heavy tailed, i.e. E[exp(εX)] = ∞ for all ε > 0, hence subexponential distributions do not
satisfy (1). If (1) is not fulfilled, the most classical result for the asymptotics of M is due to
Veraverbeke [18], who showed that if the integrated tail Ḡ(x) := ∫ ∞

x
F̄ (u) du is subexponential,

then

P(M > x) ∼ 1

a
Ḡ(x) as x → ∞. (3)

In many situations one needs nonasymptotic properties of the distribution of M . Since the
exact form of that distribution is known in some special cases only, good estimates are required.
Under condition (1) we have, for all x > 0, the so-called Lundberg inequality

P(M > x) ≤ e−h0x.

In the case when (1) is not fulfilled, upper bounds for P(M > x) have been derived
by Kalashnikov [11] and by Richards [17]. The approach in these papers is based on the
representation of M as a geometric sum of independent random variables:

P(M > x) =
∞∑
k=0

q(1 − q)kP(χ+
1 + χ+

2 · · · + χ+
k > x), (4)

where {χ+
k } are independent random variables and q = P(M = 0). The main difficulty with

this approach is the fact that one has to know the distribution of χ+
k and the parameter q. In

some special cases this information can be obtained from the initial data. But in general we
have to obtain appropriate estimates for q and P(χ+

1 > x).

The main purpose of the present paper is to derive upper bounds for P(M > x) assuming
the existence of power moments of X only. Thereby we want to avoid the representation via
geometric sums and use a supermartingale construction instead.

As is usual for deriving upper bounds, we are going to truncate summands and to use
inequalities, which are based on truncated exponential moments. But the problem is that we
have infinitely manyXis, so we cannot truncate all of them at the same level. Thus, we have to
split the time axis into intervals of finite length and then choose a level of truncation on each of
these intervals. Take, for example, a deterministic strictly increasing sequence kn with k0 = 0
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and consider the intervals In := (kn, kn+1], giving

P(M ≥ x) = P

(⋃
k≥0

{Sk ≥ x}
)

≤
∞∑
n=0

P

(⋃
k∈In

{Sk ≥ x}
)

≤
∞∑
n=0

P

(
max
k≤kn+1

(Sk − ka) ≥ x − kna
)
. (5)

Now, one can apply the Fuk–Nagaev inequalities, see [15], to every probability in the last line.
It is clear that replacing supk∈In(Sk − ka) by supk≤kn+1

(Sk − ka) is not too rough if and only if
kn+1 and kn+1 − kn are comparable. Thus, we have to take kn such that it grows exponentially.
Using this approach with kn = x2n, Borovkov [3] obtained a version of the Markov inequality
for M .

Our strategy, however, is quite different and consists of splitting [0,∞) into random intervals
defined by a sequence of stopping times. More precisely, we introduce the stopping time

τz := min{k ≥ 0 : Sk ≤ −z}, z ≥ 0.

Let Mτ = max1≤k≤τz Sk . We split the tail probability

P(M > x) ≤ P(Mτz > x)+ P

(
max
k≥τz

Sk > x
)

(6)

and consider the continuation of the process (Sk) beyond τz as a probabilistic replica of the
entire process. By Sτz ≤ −z follows

P

(
max
k≥τz

Sk > x
)

≤ P(M > x + z).

As a result, we have

P(M > x) ≤ P(Mτ > x)+ P(M > x + z),

and inductively we conclude

P(M > x) ≤
∞∑
j=0

P(Mτ > x + jz). (7)

It is worth mentioning that the difference between (5) and (7) is the same as between Riemann
and Lebesgue integrals: We do not fit the random walk Sn into a fixed splitting of the time, but
choose the splitting depending on the paths of the random walk.

A decomposition similar to (6) has been used by Denisov [5] for deriving the asymptotics
of P(Mτ0 > x) from those of P(M ∈ [x, x − Sτ0)). In the present paper we use the opposite
approach: we obtain estimates for P(M > x) from the ones for P(Mτz > x).

We now state our results on Mτz .
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1134 J. KUGLER AND V. WACHTEL

Theorem 1. Assume that At := E[|X|t ] < ∞ for some t ∈ (1, 2]. For all y satisfying
yt−1 ≥ (e − 1)Ata−1 we have the following inequality:

P(Mτz > x) ≤ A
x/y
t

ax/y−1 E[τz]y−1−(t−1)x/y log

(
1 + ayt−1

At

)

+
(

1 + A
x/y
t

ax/y
y−(t−1)x/y

)
E[τz]P(X > y). (8)

Remark 1. In the proof we show that (8) remains true if we replacea andAt by−E[X, |X| ≤ y]
and At(y) = E[|X|t , |X| ≤ y] respectively. In this case the restriction yt−1 > (e − 1)a−1At
should be replaced by E[X, |X| ≤ y] < 0. The use of truncated moments is more convenient
in theoretical applications, but for deriving concrete estimates for M it is easier to use full
moments.

Let us now turn to the case t > 2. Fix α ∈ (0, 1) and put β = 1 − α. We use the notation

ψ1(x) := exp

(
2αax

etE[X2]
)

− 1, ψ2 := βa

At,+
.

Theorem 2. Assume var(X) < ∞ and At,+ := E[Xt,X > 0] < ∞ for some t > 2.

(i) If y satisfies the condition

2αa

etE[X2] ≤ 1

y
log

(
1 + βa

At,+
yt−1

)
,

then

P(Mτz > x) ≤
(

1 + 1

ψ1(x)

)
E[τz]P(X > y)+ 2αa2

E[τz]
etE[X2]ψ1(x)

. (9)

(ii) If y satisfies the condition

2αa

etE[X2] ≥ 1

y
log

(
1 + βa

At,+
yt−1

)
, (10)

then

P(Mτz > x) ≤ ψ
−x/y
2

E[τz]
a

y−1−(t−1)x/y log(1 + ψ2y
t−1)

+ (1 + ψ
−x/y
2 y−(t−1)x/y)E[τz]P(X > y). (11)

Remark 2. With analogy to Theorem 1, we can replace var(X) andAt,+ by the corresponding
truncated expectations B2(−∞, x) = E[X2, X ≤ y] and At,+(y) = E[Xt,X ∈ (0, y]]
respectively.

Corollary 1. Assume that P(|X| > x) = L(x)x−r for some r > 1 and

P(X > x)

P(|X| > x)
→ p ∈ (0, 1) as x → ∞.

Then, it follows from (8) and (11) that

lim sup
x→∞

P(Mτz > x)

P(X > x)
≤ E[τz]

for every z > 0.
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But it follows from the results of Asmussen [1] (also see [5] and [8]) that

lim
x→∞

P(Mτz > x)

P(X > x)
= E[τz]

under the condition that the tail of F is regularly varying. This means the inequalities (8) and
(11) are asymptotically precise in the case of regularly varying tails.

In all these inequalities we have E[τz] on the right hand side. It is hard to get an exact
expression for this value via initial data, but there are good upper bounds in the literature: since
E[τz] < ∞ (see, e.g. [6]) by Wald’s identity,

E[τz] = z+ E[Rz]
a

, (12)

where Rz = −z − Sτz denotes the overshoot in τz. Hence, we get upper bounds for E[τz] by
the inequality of Lorden [13]: for E[X] < 0 and E[(X−)2] < ∞,

E[Rz] ≤ E[(X−)2]
a

, (13)

and by the inequality of Mogul’skii [14]: for E[X] ≤ 0 and E[|X|3] < ∞,

E[Rz] ≤ A
3

2

E[|X|3]
E[X2] , (14)

where A is a certain constant, A ≤ 2. The disadvantage of these bounds is that we have to
assume the existence of the second or even the third moment. We give another bound, which
only requires the finiteness of the moment of order t, t ∈ (1, 2].
Proposition 1. Assume thatAt,− := E[(X−)t ] < ∞ for some t ∈ (1, 2], then, for every z > 0,

E[Rz] ≤ t t/(t−1)A
1/(t−1)
t,−

(t − 1)at/(t−1)

(
E[−X,X < 0] + z2−t

t
At,−

)
. (15)

Combining (12) with (13), (14), or (15) we obtain upper bounds for E[τz]. Substituting
these bounds into the inequalities in Theorems 1 and 2 we get bounds for P(Mτ > x), which
contain information on X only. So, they can be used for concrete calculations.

We now come back to the global maximum.

Theorem 3. Fix some θ ∈ (0, 1) and define

c1 := 3A1/θ
t θ−(t−1)/θ

(t − 1)a1/θ−1 , c2 := 3A1/θ
t,+θ−(t−1)/θ

(t − 1)β1/θa1/θ−1 ,

ψ3(x) := aθt−1xt−1

At
, ψ4(x) := βaθt−1xt−1

At,+
.

(i) Assume that At < ∞ for some t ∈ (1, 2]. Then, for every x satisfying xt−1 ≥ θ1−t (e −
1)Ata−1 and x ≥ z(t − 1)θ−1, we have

P(M > x) ≤ c1
E[τz]
z

log(1 + ψ3(x))x
−(t−1)/θ

+ (1 + ψ3(x)
−1/θ )E[τz]

(
1

θz
Ḡ(θx)+ P(X > θx)

)
. (16)
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1136 J. KUGLER AND V. WACHTEL

(ii) Assume that var(X) < ∞ andAt,+ < ∞ for some t > 2. Then, for every x satisfying (10)
for y = θx and the conditions xt−1 ≥ θ1−t (eθ − 1)At,+β−1a−1 and x ≥ z(t − 1)θ−1,
we have

P(M > x) ≤ c2
E[τz]
z

log(1 + ψ4(x))x
−(t−1)/θ

+ (1 + ψ4(x)
−1/θ )E[τz]

(
1

θz
Ḡ(θx)+ P(X > θx)

)
. (17)

Corollary 2. If the assumptions of Corollary 1 hold, then it follows from Theorem 3 that

lim sup
x→∞

P(M > x)

Ḡ(x)
≤ E[τz]

z
θ−r .

Since the left-hand side does not depend on θ and z, we can let θ → 1 and z → ∞. Noting
that each of (13) and (14) combined with (12) yields

E[τz]
z

→ 1

a
as z → ∞,

we conclude that

lim sup
x→∞

P(M > x)

Ḡ(x)
≤ 1

a
.

Comparing this with (3) we see that the inequalities in Theorem 3 are asymptotically precise.
This even remains valid if we bound E[τz] in the inequalities of Theorem 3 by combining (13)
or (14) with (12).

The reason why we are able to obtain asymptotically precise bounds is because we may
choose z to be arbitrarily large. That possibility seems to be a quite important advantage of
our method compared to geometric sums. If the distribution of χ+

1 is subexponential, then it
follows easily from (4) that

P(M > x) ∼
(

1

q
− 1

)
P(χ+

1 > x) as x → ∞.

Therefore, in order to obtain an upper bound for the maximum we need to control the quantity
1/q. It is well known that 1/q = E[−Sτ0 ] = E[R0].Thus, we may apply (13), (14), or (15) with
z = 0. But corresponding inequalities forM will not be asymptotically precise. Summarising,
the approach via geometric sums can only lead to asymptotically precise bounds if q is known.

We next test our inequalities in the heavy-traffic regime. Let {S(a), a ≥ 0} be a family
of random walks with E[X(a)] = −a. We assume that X(a) = X(0) − a for all a > 0. Let
M(a) denote the corresponding maximum. It is known that if X(0) belongs to the domain
of attraction of a stable law, then there exists a regularly varying function g(a) such that
g(a)M(a) converges weakly as a → 0. It turns out that our inequalities may be applied to
large deviation problems in the heavy-traffic convergence mentioned above. More precisely,
they give asymptotically precise bounds for the probabilities P(M(a) > xa) if xa � 1/g(a).
In the case of σ 2 := var(X(0)) being finite, we have g(a) = a and the weak limit of aM(a) is
the exponential distribution with parameter 2/σ 2.

Theorem 4. Assume that σ 2 < ∞ and the right tail of the distribution function of X(0) is
regularly varying with index r > 2, that is, P(X(0) > u) = u−rL(u), whereL is slowly varying.
If

lim inf
a→0

xa

a−1 log a−1 > er
(r − 2)

2
σ 2, (18)
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then

P(M(a) > xa) ∼ x−r+1
a L(xa)

(r − 1)a
as a → 0. (19)

Olvera-Cravioto et al. [16] have shown that, for an M/G/1 queue, the relation (19) holds
under the condition

lim inf
a→0

xa

a−1 log a−1 >
(r − 2)

2
σ 2.

We believe that the latter condition should also be sufficient for the validity of (19) in the general
case. The extra factor er appears in (18) only as a consequence of the technique we used, and
can be removed by adapting (17) to the heavy-traffic setting.

Theorem 5. Assume that E[(min{0, X(0)})2] < ∞ and P(X(0) > u) = u−rL(u) with r ∈
(1, 2). If

lim inf
a→0

g(a)xa = ∞, (20)

then

P(M(a) > xa) ∼ x−r+1
a L(xa)

(r − 1)a
as a → 0. (21)

We have imposed the condition E[(min{0, X(0)})2] < ∞ just to use the Lorden inequality
for the overshoot. If we replace that condition by E[(min{0, X(0)})t ] < ∞ with t ∈ (1, 2),
then, using Proposition 1, we can show that (21) holds for xa � a−t/(t−1)2 only. The reason is
the roughness of Proposition 1 for small values of a. Indeed, if we use (15) even with t = 2,
we get the bound E[Rz] ≤ Ca−2, which is much worse than the Lorden inequality.

2. Proofs

2.1. Proofs of Theorems 1 and 2

We set for brevity τ = τz.

Lemma 1. For all h satisfying
E[ehX,X ≤ y] ≤ 1 (22)

we have the inequality

P(Mτ > x) ≤
(

1 + 1

ehx − 1

)
E[τ ]P(X > y)+ E[τ ] ah

ehx − 1
. (23)

Proof. Our strategy is to truncate the random variables Xi in the level y:

P(Mτ > x) ≤ P

(
Mτ > x, max

1≤k≤τ Xk ≤ y
)

+ P

(
max

1≤k≤τ Xk > y
)

= P(Mτ1{max1≤k≤τ Xk≤y} > x)+ P

(
max

1≤k≤τ Xk > y
)
. (24)

From the Wald identity follows

P

(
max

1≤k≤τ Xk > y
)

≤ E

[ τ∑
k=1

1{Xk>y}
]

= E[τ ]P(X > y). (25)
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To examine the first term on the right-hand side of (24) we introduce the process {Wk} defined
by

W0 := 1, Wk :=
k∏
i=1

ehXi1{Xi≤y}, k ≥ 1.

It is clear that if h satisfies (22), {Wk} is a positive supermartingale. Define

σy := min{k ≥ 1 : Xk > y}, tx := min{k ≥ 1 : Sk > x}, T := min{σy, tx, τ }.
Applying the optional stopping theorem to the supermartingale {Wk∧T }, we have

1 = W0 ≥ E[WT ] = E[WT 1{tx<τ,tx<σy }] + E[WT 1{τ<tx ,τ<σy }].
We analyse the two terms on the right-hand side separately:

E[WT 1{tx<τ,tx<σy }] ≥ ehxP(tx < τ < σy) = ehxP(Mτ1{max1≤k≤τ Xk≤y} > x)

and
E[WT 1{τ<tx ,τ<σy }]

= E[ehSτ ] − E[ehSτ 1{Mτ>x}∪{max1≤k≤τ Xk>y}]
≥ E[ehSτ ] − e−hz(

P(Mτ1{max1≤k≤τ Xk≤y} > x)+ P

(
max

1≤k≤τ Xk > y
))
.

Consequently,

P(Mτ1{max1≤k≤τ Xk≤y} > x) ≤
1 − E[ehSτ ] + P( max

1≤k≤τ Xk > y)

ehx − 1

and, hence, by applying (25),

P(Mτ1{max1≤k≤τ Xk≤y} > x) ≤ 1 − E[ehSτ ] + E[τ ]P(X > y)

ehx − 1
.

It is easy to see that
E[ehSτ ] ≥ E[1 + hSτ ] = 1 + hE[Sτ ]

and as a result we have

P(Mτ1{max1≤k≤τ Xk≤y} > x) ≤ E[τ ]ah+ P(X > y)

ehx − 1
. (26)

Applying (25) and (26) to the summands in (24) completes the proof.

To prove Theorems 1 and 2 we need to choose a specific h for which (22) holds. The optimal
choice would be the positive solution of the equation E[ehX,X ≤ y] = 1, which is in the
spirit of the Cramér–Lundberg condition. But it is not clear how to solve this equation. For
this reason we replace E[ehX,X ≤ y] = 1 by the equation φ(h, y) = 1, where φ(h, y) is an
appropriate upper bound for E[ehX,X ≤ y].

If At < ∞, we may use a bound from the proof of Theorem 2 from [10], which says

E[ehX,X ≤ y] ≤ 1 + hE[X, |X| ≤ y] + ehy − 1 − hy

yt
At . (27)
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Using the Markov inequality we also obtain

E[X, |X| ≤ y] ≤ −a − E[X,X ≤ −y] ≤ −a + At

yt−1 ,

and, therefore,

E[ehX,X ≤ y] ≤ 1 − ha + ehy − 1

yt
At .

Put h0 := (1/y) log(1 + ayt−1/At ). It is easy to see that

−h0a + eh0y − 1

yt
At ≤ 0

for all y such that yt−1 ≥ (e − 1)Ata−1 and this implies that h0 satisfies (22). Using (23) with
h = h0 and applying the inequality

(1 + u)x/y ≥ 1 + ux/y, x ≥ y,

we obtain

P(Mτ > x) ≤ A
x/y
t

ax/y−1 E[τ ]y−1−(t−1)x/y log

(
1 + ayt−1

At

)

+
(

1 + A
x/y
t

ax/y
y−(t−1)x/y

)
E[τ ]P(X > y).

Thus, the proof of Theorem 1 is complete.
In order to show that we can replace E[X] and At by the corresponding truncated moments,

see Remark 1, we first note that with analogy to (27) and by using ex − 1 ≤ xex ,

E[ehX,X ≤ y] ≤ 1 + hE[X, |X| ≤ y] + h
ehy − 1

yt−1 E[|X|t , |X| ≤ y].

If E[X, |X| ≤ y] < 0, then

h0 := 1

y
log

(
1 + |E[X, |X| ≤ y]|yt−1

E[|X|t , |X| ≤ y]
)

is strictly positive and solves

hE[X, |X| ≤ y] + h
ehy − 1

yt−1 E[|X|t , |X| ≤ y] = 0.

Therefore, we may use Lemma 1 with h = h0 and get an inequality with truncated moments.
To bound E[ehX,X ≤ y] under the conditions of Theorem 2 we proceed similar to the proof

of Theorem 3 from [15] and get

E[ehX,X ≤ y] ≤ 1 − ha + etE[X2]h
2

2
+ ehy − 1 − hy

yt
At,+.
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1140 J. KUGLER AND V. WACHTEL

Following further the method from the proof of this theorem, we split this upper bound into
two parts:

−αha + etE[X2]h
2

2
=: f1(h),

−βha + ehy − 1 − hy

yt
At,+ =: f2(h).

We consider f1 and f2 separately. It is clear that

h1 := 2αa

etE[X2]
is the positive solution of the equation f1(h) = 0. Moreover, f1(h) < 0 for all h ∈ (0, h1).

Furthermore, it is easy to see that f2 takes its unique minimum in

h2 := 1

y
log

(
1 + βa

At,+
yt−1

)
.

Since f2 is convex, we have

f2(h) < 0 for all h ∈ (0, h2]. (28)

The assumption in Theorem 2(i) means that h1 ≤ h2. In this case, taking into account (28),
we obtain

f1(h1)+ f2(h1) < 0.

From the latter inequality we conclude that h1 satisfies (22) and by applying (23) with h = h1
we obtain (9).

Under the conditions of Theorem 2(ii) we have h2 ≤ h1. By the same arguments we get

f1(h2)+ f2(h2) < 0.

Then, applying (23) with h = h2 and using the inequality (1 + u)x/y ≥ ux/y , we obtain (11).

2.2. Proof of Proposition 1

We want to use Theorem 2.1 from [4]. If we put F := F−X the conditions (G1)–(G3) of
this theorem are fulfilled in our setting. Hence, we get

E[Rz] ≤ c

∫ ∞

0
P(−X > u) du+ c

∫ ∞

0

∫ u+z

u

P(−X > v) dv du, (29)

where

c = b∗(εa)
a(1 − ε)

(30)

with b∗(u) = min{v : −E[X,X < −v] ≤ u} and ε ∈ (0, 1) arbitrary. Clearly,

∫ ∞

0
P(−X > u) du = E[−X,X < 0]. (31)
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Changing the order of integration gives us

∫ ∞

0

∫ u+z

u

P(−X > v) dv du =
∫ z

0
vP(−X > v) dv + z

∫ ∞

z

P(−X > v) dv

≤ z2−t
∫ ∞

0
vt−1

P(−X > v) dv

= z2−t

t
At,−. (32)

We easily see that,

b∗(u) ≤
(
At,−
u

)1/(t−1)

,

therefore, by (30),

c ≤ A
1/(t−1)
t,−

at/(t−1)ε1/(1−t)(1 − ε)
,

and, by minimisation over ε ∈ (0, 1),

c ≤ t t/(t−1)A
1/(t−1)
t,−

(t − 1)at/(t−1)
. (33)

Finally, combining (29), (31), (32), and (33) gives us the desired result.

2.3. Proof of Theorem 3

We prove (16) only. The proof of the second bound goes along the same lines.
Using Theorem 1 with y = θ(x + jz), we obtain

P(Mτz > x + jz) ≤ A
1/θ
t θ−1−(t−1)/θ

E[τz]
a1/θ−1(x + jz)1+(t−1)/θ

log

(
1 + aθt−1(x + jz)t−1

At

)

+
(

1 + A
1/θ
t θ−(t−1)/θ

a1/θ (x + jz)−(t−1)/θ
)

E[τz]P(X > θ(x + jz)),

and in view of (7),

P(M > x) ≤ A
1/θ
t θ−1−(t−1)/θ

a1/θ−1 E[τz]
1(x, z)

+
(

1 + A
1/θ
t θ−(t−1)/θ

a1/θ x−(t−1)/θ
)

E[τz](P(X > θx)+
2(x, z)),

where


1(x, z) :=
∞∑
j=0

log

(
1 + aθt−1(x + jz)t−1

At

)
(x + jz)−1−(t−1)/θ

and


2(x, z) :=
∞∑
j=1

P(X > θ(x + jz)).
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Define


̃1(x, z) :=
∞∑
j=1

log

(
1 + aθt−1(x + jz)t−1

At

)
(x + jz)−1−(t−1)/θ .

The summands in this sum are strictly decreasing, so we conclude, by the integral criteria for
sums that


̃1(x, z) ≤
∞∑
j=1

∫ j

j−1
log

(
1 + aθt−1(x + uz)t−1

At

)
(x + uz)−1−(t−1)/θ du

= 1

z

∫ ∞

x

log

(
1 + aθt−1wt−1

At

)
w−1−(t−1)/θ dw

and further, by integration by parts,

1

z

∫ ∞

x

log

(
1 + aθt−1wt−1

At

)
w−1−(t−1)/θ dw

≤ θ

z(t − 1)
log

(
1 + aθt−1xt−1

At

)
x−(t−1)/θ + θ2

z(t − 1)
x−(t−1)/θ .

Therefore, for all x satisfying xt−1 ≥ θ1−t (eθ − 1)Ata−1 and x ≥ z(t − 1)θ−1,


1(x, z) ≤ 3θ

z(t − 1)
log

(
1 + aθt−1xt−1

At

)
x−(t−1)/θ .

Furthermore, it is easy to see that


2(x, z) ≤
∞∑
j=1

∫ j

j−1
P(X > θ(x + uz)) du = 1

θz
Ḡ(θx), (34)

and so Theorem 3 is proved.

2.4. Proof of Theorem 4

Foss et al., see Theorem 5.1 of [9], have shown, for any random walk with drift −a and xa
with xa → ∞ as a → 0, the following lower bound:

lim inf
a→0

P(M(a) > xa)

a−1Ḡ(xa)
≥ 1.

It follows from the regular variation of P(X(0) > u), that

Ḡ(xa) ∼ 1

r − 1
x−r+1
a L(xa) as a → ∞, (35)

therefore,

P(M(a) ≥ xa) ≥ (1 + o(1))
x−r+1
a L(xa)

(r − 1)a
as a → 0.

Thus, we only have to derive an upper bound.
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During the rest of this proof we assume a to be sufficiently small in every inequality.
We want to apply Theorem 3(ii) with t < r . It is clear that

A
(a)
t,+ := E[(X(a))t , X(a) > 0] ≤ E[(X(0))t , X(0) > 0] = A

(0)
t,+;

therefore, A(a)t,+ is finite for t < r and

lim
a→0

A
(a)
t,+ = A

(0)
t,+ > 0.

Furthermore, we have to show that (10) is fulfilled for y = θxa under our assumptions. Since
the function y−1 log(1 + βayt−1/A

(a)
t,+) is decreasing for y � a1/(t−1), we have the following

bound for xa ≥ ca−1 log a−1:

1

θxa
log

(
1 + βθt−1axt−1

a

A
(a)
t,+

)
≤ a

θc log a−1 log

(
1 + βθt−1ct−1

A
(a)
t,+

a2−t logt−1 a−1
)

= t − 2

θc
a(1 + o(1)).

This implies that if we choose c > er (r − 2)E[X2]/2 and θ = (1 − δ)(t − 2)/(r − 2) with δ
sufficiently small, we can choose α < 1 so close to 1 that xa satisfies (10).

We take z = za satisfying a−1 � z � xa . Then, combining (12) and (13), we get

E[τz]
z

∼ 1

a
as a → 0. (36)

Since a−1 � xa and (t − 1)/θ − (r − 1) > 1/θ − 1 for θ < (t − 2)/(r − 2), we have

a−1/θ+1 E[τz]
z

log

(
1 + βθt−1axt−1

a

A
(a)
t,+

)
x

−(t−1)/θ
a = o(a−1x−r+1

a L(xa)). (37)

Furthermore, it follows from the condition z = o(xa) and the regular variation of P(X(0) > xa)

that
zP(X(a) > xa) = o(x−r+1

a L(xa)). (38)

Combining (36) with (38) and (35), we obtain

(
1 +

(
A
(a)
t,+

βθt−1axt−1
a

)1/θ)
E[τz]

(
1

θz
Ḡ(θxa)+ P(X(a) > θxa)

)

∼ θ−r (r − 1)−1a−1x−r+1
a L(xa) (39)

and substituting (37) and (39) into (17) gives us

lim sup
a→0

P(M(a) > xa)

a−1x−r+1
a L(xa)

≤ θ−r (r − 1)−1.

To complete the proof it suffices to note that we can choose θ arbitrarily close to 1 by choosing
t close to r . This implies that the previous inequality is valid even with θ = 1.
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2.5. Proof of Theorem 5

We again need an upper bound only. Let a be sufficiently small during this proof.
It follows from the assumptions in the theorem that S(0)n /cn converges weakly to a stable

law of index r . The sequence cn can be taken from the equation c−rn L(cn) = 1/n. It is known
that the function g(a) in the heavy-traffic approximation can be defined by the relations

g(a) = 1/cna and ana ∼ cna .

The latter can be rewritten as

cna ∼ a
(cna )

r

L(cna )
.

From this we infer that (20) is equivalent to

axr−1
a

L(xa)
→ ∞ as a → 0. (40)

We want to apply Theorem 1 for t = 2 with −E[X(a), |X(a)| ≤ y] and A2(y) instead of
a and A2 respectively and with y = θxa . According to Remark 1 we have to show that
E[X(a), |X(a)| ≤ θxa] is negative. Using the Markov inequality, we have

E[X(a), |X(a)| ≤ θxa] ≤ −a + (θxa)
−1

E[(min{0, X(0)})2].
In view of (40), axa → ∞. Therefore,

E[X(a), |X(a)| ≤ θxa] ≤ −a(1 + o(1)).

Furthermore,

A2(y) ∼ r

2 − r
y2−rL(y)

and consequently, by −E[X(a), |X(a)| ≤ θxa] ∼ a, we have

A
1/θ
2 (θxa)E[τz] (−E[X(a), |X(a)| ≤ θxa])1−1/θ

θ1+1/θx
1+1/θ
a

log

(
1 − θxaE[X(a), |X(a)| ≤ θxa]

A2(θxa)

)

≤ (1 + o(1))k1E[τz]P(X(a) > xa) log

(
1 + k2

axr−1
a

L(xa)

)(
axr−1
a

L(xa)

)−(1/θ−1)

(41)

with appropriate k1 and k2. Then, (40) implies that

log

(
1 + c2

axr−1
a

L(xa)

)(
axr−1
a

L(xa)

)−(1/θ−1)

= o(1). (42)

Furthermore,
A

1/θ
2 (θxa)

a1/θ θ−1/θx
−1/θ
a ∼ k3

(
axr−1
a

L(xa)

)−1/θ

with suitable k3 and, hence, by (40),

(
1 + A

1/θ
2 (θxa)

a1/θ θ−1/θx
−1/θ
a

)
= (1 + o(1)). (43)
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Then, combining (41), (42), and (43), Theorem 1 with t = 2 and y = θxa gives

P(M(a)
τ > xa) ≤ (1 + o(1))θ−r

E[τz]P(X(a) > xa),

where θ ∈ (0, 1) is arbitrary. Hence, by θ → 1, we have

P(M(a)
τ > xa) ≤ (1 + o(1))E[τz]P(X(a) > xa).

By the summation formula (7), we get a bound for the total maximum:

P(M(a) > xa) ≤ (1 + o(1))E[τz]
∞∑
j=0

P(X(a) > xa + jz).

Combining (34) and (35) with a−1 � z � xa gives

∞∑
j=0

P(X(a) > xa + jz) ≤ (1 + o(1))

(
x−r
a L(xa)+ x−r+1

a L(xa)

z(r − 1)

)

∼ (1 + o(1))
x−r+1
a L(xa)

z(r − 1)

and regarding (36), this completes the proof.
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