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The interaction of near-inertial waves (NIWs) with submesoscale vorticity filaments is
explored using theory and simulations. We study three idealised set-ups representative
of submesoscale flows allowing for O(1) or greater Rossby numbers. First, we consider
the radiation of NIWs away from a cyclonic filament and develop scalings for the decay of
wave energy in the filament. Second, we introduce broad anticyclonic regions that separate
the cyclonic filaments mimicking submesoscale eddy fields and analyse the normal modes
of this system. Third, we extend this set-up to consider the vertical propagation and the
radiation of NIW energy. We identify a key length scale Lm , dependent on the strength
of the filament, stratification and vertical scale of the waves, that when compared with
the horizontal scales of the background flow determines the NIW behaviour. A generic
expression for the vertical group velocity is derived that highlights the importance of
horizontal gradients for vertical wave propagation. An overarching theme of the results
is that NIW radiation, both horizontally and vertically, is most efficient when Lm is
comparable to the length scales of the background flow.
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1. Introduction
Near-inertial waves (NIWs), unbalanced motions with frequencies close to the local
Coriolis frequency f , are an important feature of upper ocean dynamics. However, their
dynamics are non-trivial as interactions with the balanced flow modify their spatial
structure and propagation behaviour. Perhaps the most important of these interactions is
ζ -refraction arising from the modification of the local minimum frequency by geostrophic
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vorticity ζ := ∂V/∂x − ∂U/∂y, where U and V are the horizontal velocities of the
geostrophically balanced background flow. Early theoretical work utilising a Wentzel–
Kramers–Brillouin–Jeffreys (WKBJ) approximation (Kunze 1985) identified an increase
in the local minimum frequency in regions of cyclonic vorticity (ζ > 0, assuming f > 0
as we do throughout the paper) and conversely a decrease in regions of anticyclonic
vorticity (ζ < 0). As a result of these shifts, there is a tendency for NIW energy to
accumulate in anticyclonic regions and it is possible to have trapped subinertial waves
confined to anticyclones. Both effects are now well documented by observations (e.g.
Martínez-Marrero et al. 2019; Thomas et al. 2020). However, NIWs often have large
horizontal scales, particularly if forced by winds that typically have footprints 1000 s of
kilometres wide and orders of magnitude larger than typical mesoscale eddies (10–100 s
of kilometres). This can place the WKBJ approximation, which requires the waves to vary
rapidly on the scale of the background flow, on very weak theoretical footing.

A more robust model was proposed by Young & Ben Jelloul (1997), hereafter the YBJ
model, which makes no spatial scale assumptions but rather models the evolution of the
NIWs via a multiple scales expansion in time. In the YBJ model the fast dynamics capture
the inertial oscillations with the effects of wave dispersion, geostrophic advection and
ζ -refraction modifying the NIW amplitude on the slow time scale. The validity of the
model only requires that the wave Burger number (see § 2.2) and the Rossby number, ζ/ f ,
of the background flow be small. For many flows these assumptions are met, including
the important case of a wind-forced inertial oscillation interacting with a mesoscale eddy.
In these situations the YBJ model has had great success in predicting the evolution of
the NIWs and in interpreting observational data (Asselin et al. 2020; Thomas et al. 2020;
Conn, Fitzgerald & Callies 2024; Thomas et al. 2024).

However, in recent years growing attention has been paid to submesoscale flows,
smaller-scale flows characterised by O(1) or greater Rossby numbers (Thomas, Tandon &
Mahadevan 2008; McWilliams 2016; Taylor & Thompson 2023). Frontogenetic processes,
prevalent at submesoscales, tend to sharpen dense, cyclonic filaments leading to strongly
skewed vorticity distributions. For example, Shcherbina et al. (2013) studied the statistical
distribution of vertical vorticity in the North Atlantic Mode Water region south of the Gulf
Stream using parallel transects from two ships and a regional model. They found that the
distribution of vertical vorticity was asymmetric with the mode of the distribution near
ζ = −0.5 f and a long tail of cyclonic vorticity that extended well past ζ = f . In the most
extreme submesoscale environments, such as the northern Gulf of Mexico, a similarly
skewed distribution can be found but with vorticity maxima orders of magnitude larger
than f (Schlichting et al. 2023). Physically, the strong cyclonic vorticity corresponds
with thin filaments and submesoscale eddies (see figure 1b in Shcherbina et al. 2013 or
figure 2f in Schlichting et al. 2023). These highly localised vorticity structures imply a
white enstrophy spectrum and a kinetic energy spectrum with a k−2 slope as has been
observed in the upper ocean (Shcherbina et al. 2013; Callies et al. 2015). In the northern
Gulf of Mexico, the large freshwater influx from the Mississippi-Atchafalaya river system
not only sets up the lateral buoyancy gradients driving the submesoscales flows but also
results in a very strong vertical density stratification (Zhang, Hetland & Zhang 2014).
While many of the examples we use in this paper are motivated by the conditions in the
northern Gulf of Mexico, the theory we develop is general and may be applied across a
broad range of realistic oceanic conditions.

The interactions of NIWs with sharp vorticity filaments with a large Rossby number
warrant theoretical consideration since this combination falls outside the purview of
existing theory. In particular, we are interested in how the results of YBJ theory generalise
to large Rossby numbers. Furthermore, the spatial distribution of submesoscale vorticity is
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Figure 1. Schematic summarising the three set-ups we consider. (a) A cyclonic vorticity filament (with
Gaussian shape) in an unbounded domain with an initially uniform across-filament velocity ui . (b) The same
cyclonic vorticity filament in an otherwise anticyclonic (Roac < 0) flow in a periodic domain. Here we illustrate
the case ξ := Lx/L f = 10. (c) Same background flow as (b), now contoured in blue (anticyclonic) and red
(cyclonic), but in two dimensions. The initial across-filament velocity ui (z) is a horizontally uniform near
surface slab.

Physical parameter Description

f Coriolis frequency
cm Mode speed
�V Filament strength
L f Filament width
Lx Half-width of the anticyclonic region
Lm Length scale of filament influence, Lm := c2

m/ f�V

Table 1. Physical parameters describing the problems we consider. Here Lm is a very important length scale
derived from the other parameters.

not well described by a single length scale and this begs the question of which length scales
are most important for determining the behaviour of NIWs? To answer these questions,
we consider a highly idealised set-up retaining only the key physics necessary to induce
ζ -refraction. Although sharp filaments generally form through frontogenesis, we ignore
frontal dynamics and consider a barotropic filament. We work in two dimensions x, z
neglecting along-filament variations, which not only eliminates geostrophic advection but
also precludes barotropic instability. Despite these simplifications the problem remains
extremely rich and admits a range of phenomena across a large parameter space.

Our approach is to slowly introduce these phenomena by considering three problems of
increasing complexity, summarised by the schematic in figure 1. In this paper we will meet
five independent physical parameters that, for reference, are listed in table 1, along with a
crucial derived length scale Lm . From these physical parameters we construct many non-
dimensional parameters that we also list for reference in table 2. The paper is organised as
follows: in § 2 we introduce the central equation of this study, a generalised Klein–Gordon
equation; then in § 3 we consider the interaction of a single vertical mode with a cyclonic
vorticity filament in an unbounded domain; in § 4 we introduce an additional length scale
to the background flow, namely the width of the domain, to model the anticyclonic regions
that separate cyclonic filaments; in § 5 we extend the set-up of § 4 to a two-dimensional
(2-D) problem and consider multiple vertical modes, vertical propagation and the radiation
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Non-dimensional parameter Physical parameter dependence Name

Bum c2
m/ f 2 L2

f Filament Burger number
Rof �V/ f L f Filament Rossby number
γm c2

m/ f L f�V ≡ Lm/L f Tunnelling parameter
αm �V/cm

Roac − 1
2�V/ f Lx Rossby number of the anticyclonic region

ξ Lx/L f

Γm 2c2
m/ f Lx�V ≡ 2Lm/Lx

Table 2. Non-dimensional parameters expressed in terms of the physical parameters defining the problems.

of surface intensified NIW energy; finally, we offer conclusions and points of discussion
in § 6.

2. Klein–Gordon equation

2.1. Derivation
We define a barotropic background geostrophic velocity V (x) and stratification N 2(z) :=
−(g/ρ0)(∂ρ̄/∂z), where ρ̄(z) is the background density, ρ0 is the Boussinesq reference
density and g the gravitational acceleration. Focusing on NIWs with small aspect
ratios, we linearise the hydrostatic, inviscid, adiabatic Boussinesq equations about this
background state and make the simplifying assumption that the dynamics are independent
of y. The linearised equations are

∂u

∂t
− f v + 1

ρ0

∂p

∂x
= 0, (2.1a)

∂v

∂t
+ u

∂V

∂x
+ f u = 0, (2.1b)

1
ρ0

∂p

∂z
− b = 0, (2.1c)

∂b

∂t
+wN 2 = 0, (2.1d)

∂u

∂x
+ ∂w

∂z
= 0, (2.1e)

where u, v, w are the perturbation velocities, b := g(ρ̄ − ρ)/ρ0 is the perturbation
buoyancy defined from the density ρ, p is the perturbation pressure and f is the Coriolis
frequency, taken to be constant under a traditional f -plane approximation.

By defining a streamfunction ψ such that u = −∂ψ/∂z, w= ∂ψ/∂x and systematically
eliminating variables, (2.1) can be reduced to a single equation, i.e.(

∂2

∂t2 + f 2
eff

)
∂2ψ

∂z2 + N 2 ∂
2ψ

∂x2 = 0, (2.2a)

where

f 2
eff(x) := f

(
f + ∂V

∂x

)
(2.2b)

is the square of the effective Coriolis frequency. Note that with variations in y neglected,
the along-filament momentum equation is a conservation equation for the absolute

1020 A9-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
63

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10637


Journal of Fluid Mechanics

momentum M := f x + V + v. Furthermore, f 2
eff(x) is proportional to the gradient of the

background absolute momentum V + f x . Equation (2.2a) is separable and so we write

ψ =
∑

m

Xm(x, t)Zm(z), (2.3a)

with the vertical modes defined by

c2
m
∂2

∂z2 Zm = −N 2Zm, (2.3b)

where the mode speed cm is a constant of separation. Taking N 2 to be constant and
projecting ψ onto sine modes over a domain of depth Lz , Zm = sin mπ z/Lz , thereby
satisfying no-penetration boundary conditions, we have

cm = N Lz

mπ
. (2.4)

Alternatively, if the vertical structure is described by a plane wave with wavenumber kz
then cm = Nk−1

z . Before § 5, we are not particularly interested in the structure of the
vertical modes, only in the value of cm , which increases with increasing stratification or
vertical scale. Note that in these vertical mode decompositions we have filtered out the
barotropic mode.

With the vertical structure set, the equation for the horizontal structure is[
∂2

∂t2 − c2
m
∂2

∂x2 + f 2
eff(x)

]
X = 0, (2.5)

where we have dropped the subscript m on X to lighten the notation. This is the Klein–
Gordon equation. First derived as a relativistic wave equation, the Klein–Gordon equation
can also be interpreted as describing classical waves in an elastic medium where, in this
case, the term involving feff represents elasticity. Both interpretations provide insight into
the roles of the background flow and vertical structure of the waves in determining the
behaviour of the solutions. For waves with frequencies much greater than feff, the elastic
term is negligible and the Klein–Gordon equation reduces to the wave equation with wave
speed cm . Furthermore, the characteristics of (2.5) have slope cm (in x, t space) and so cm
is the rate at which the Klein–Gordon equation propagates information.

We solve the Klein–Gordon equation subject to the initial conditions

X = 1,
∂X
∂t

= 0. (2.6a,b)

Such uniform initial conditions are a popular theoretical device (e.g. Balmforth et al. 1998;
Asselin & Young 2020; Asselin et al. 2020; Kafiabad, Vanneste & Young 2021) motivated
by the scenario in which a large-scale wind event impulsively excites ageostrophic
motions in the upper ocean. Crucially, the spatial structure of the waves develops
through interactions with the background flow rather than being prescribed by the initial
conditions.

2.2. The YBJ approximation
Young & Ben Jelloul (1997; YBJ) model the evolution of NIWs via a multiple time-scale
expansion. They formally justify the expansion by assuming that the Rossby number of
the background flow and the wave Burger number Buw := c2

m/ f 2L2
w, where Lw is the

horizontal scale of the waves, are small. For the barotropic case with a projection onto
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vertical modes, the leading-order horizontal wave velocities are given by

um + ivm = − f 2c2
mAe−i f t , (2.7)

where the complex amplitude A varies on a slow time scale (Balmforth et al. 1998).
Furthermore, the leading-order vertical velocity, buoyancy and pressure may also be
expressed in terms of A. The evolution equation for A is

∂A
∂t

+ ∂(Ψ,A)
∂(x, y)

+ i
1
2
ζA = i

c2
m

2 f
∇2A, (2.8)

where Ψ is the geostrophic steamfunction, ∂(·, ·)/∂(x, y) is the Jacobian, ζ := ∇2Ψ ≡
∂V/∂x − ∂U/∂y is the vertical vorticity of the background flow and ∇2 := ∂2/∂x2 +
∂2/∂y2 is the horizontal Laplacian. Imposing ∂/∂y ≡ 0, (2.8) reduces to

2 f i
∂A
∂t

= −c2
m
∂2A
∂x2 + f

∂V

∂x
A, (2.9)

which is the time-dependent Schrödinger equation in one spatial dimension.
To reduce the Klein–Gordon equation (2.5) to the time-dependent Schrödinger equation

(2.9), we simply let

X = Ae−i f t + c.c. (2.10a)

such that

∂2

∂t2 X =
[(

− f 2 − 2i f
∂

∂t
+ ∂2

∂t2

)
A
]

e−i f t + c.c. (2.10b)

and neglect the ∂2A/∂t2 term, consistent with the multiple scales approximation
underpinning the YBJ expansion. Thus, the validity of the YBJ approximation in this
problem hinges on whether or not we are justified in dropping the ∂2A/∂t2 term. This
approximation has a direct analogue in quantum field theory where it is used to recover
the Schrödinger equation from the Klein–Gordon equation in the non-relativistic limit
(e.g. Sterman 1993). Throughout the paper we comment on the validity of the YBJ
approximation as a function of the parameters describing the different set-ups we consider.

3. Radiation by a filament in an unbounded domain

3.1. Problem set-up
To proceed further we must now specify the background flow V (x). In our first set-up, we
consider a background state defined by a velocity scale and a single length scale. That is, a
cyclonic filament in an unbounded domain (figure 1a) with geostrophic velocity gradient,

∂V

∂x
=�V

1
L f

F
(

x

L f

)
, (3.1)

where L f is the width of the filament, �V > 0 is the change in geostrophic velocity
over the filament and F(η) is a positive function of total integral 1. Since the filament
is cyclonic, we expect to observe the radiation of NIWs out of the filament analogous
to the results of Kafiabad et al. (2021) who considered axisymmetric vortices in the
low-Rossby-number limit.

The boundary conditions are X → cos f t as |x | → ∞. Clearly, the solution is not
normalisable, i.e. it has infinite energy, but in this aspect the set-up is similar to a scattering
problem in quantum mechanics. Furthermore, we always have the option of reframing our
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problem in terms of Y := X − cos f t . This converts the set-up into a forced problem with
friendlier boundary conditions, Y → 0 as |x | → ∞, and homogeneous initial conditions,
Y = ∂Y/∂t = 0.

Since we are considering a radiation problem, a quantity of considerable interest is the
time scale, T , over which this radiation occurs. To quantify this, we define

T10 := min

{
t

∣∣∣∣∣ X (0, t)2 + f −2 ∂X
∂t
(0, t)2 <

1
10

2
}

(3.2a)

and the YBJ equivalent

T (YBJ )
10 := min

{
t

∣∣∣∣∣ 4|A(0, t)|2 < 1
10

2
}
. (3.2b)

Here T10 is the time at which this particular norm of the solution at the centre of the
filament first drops to one tenth of its initial value. The factor of 4 in T (YBJ )

10 comes from
the fact that the initial value of A is 1/2.

3.2. The parameter space
With background flow (3.1), the problem is defined by four dimensional parameters: the
Coriolis frequency f , the mode speed cm , the filament width L f and the filament strength
�V . Therefore, after choosing time and length scales to non-dimensionalise the problem,
we are left with a 2-D parameter space. Non-dimensionalising using the available time and
length scales,

t̃ := f t, x̃ := x

L f
, (3.3a,b)

the Klein–Gordon equation (2.5) becomes[
∂2

∂ t̃2 − Bum
∂2

∂ x̃2 + 1 + Rof F(x̃)
]

X = 0. (3.4)

The two parameters appearing here are the filament Burger and Rossby numbers:

Bum := c2
m

f 2L2
f

, Rof := �V

f L f
. (3.5a,b)

However, this pair of non-dimensional numbers is not necessarily the best choice to span
the parameter space. Indeed, we find that the ratio of the filament Burger and Rossby
numbers,

γm := Bum

Rof
≡ c2

m

f L f�V
, (3.6)

can be used to distinguish qualitatively different dynamical regimes. A heuristic
explanation of why γm is an important parameter is that the spatial structure of the waves
is set by the dispersive, Bum∂

2/∂ x̃2, and refractive, Rof F(x̃), terms. As a result, γm :=
Bum/Rof determines whether the spatial scale of the waves is short or long compared
with the width of the filament. In particular, we find that, for γm � 1, the spatial scale
of the waves is

√
γm L f � L f whereas, for γm � 1, the spatial scale of the waves is

γm L f � L f . When γm is large, the waves may penetrate across the cyclonic filament in a
manner analogous to quantum tunnelling. Therefore, we call γm the ‘tunnelling parameter’.
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Figure 2. Radiation time T̃10/2π := f T10/2π (3.2) in inertial periods computed from numerical simulations
of a Gaussian filament (§ 3.5) as a function of γm and Rof for both the Klein–Gordon (a) and YBJ (b) problems.
Lines of constant Bum and α2

m are overlaid in grey and brown, respectively. The diagram inset in (b) indicates
the distinguished limits summarised in table 3. White regions are excluded as, for these parameter values, waves
radiated from the filament loop around the finite numerical domain and return to the filament before the T10
criterion is met.

Critically, these length scale considerations determine which asymptotic techniques we
may employ to investigate the problem. Namely, when γm � 1, we use ray-tracing results
derived from a WKBJ approximation whereas when γm � 1, we approximate the filament
as a delta-function.

To make the dependence on γm explicit, and to aid the asymptotic analysis by expressing
the filament as an order 1 function of an order 1 parameter, we divide (3.4) by Rof to give[

Ro−1
f

(
1 + ∂2

∂ t̃2

)
− γm

∂2

∂ x̃2 + F(x̃)
]

X = 0. (3.7a)

Applying the same manipulations to the time-dependent Schrödinger equation (2.9) gives[
−2iRo−1

f
∂

∂ t̃
− γm

∂2

∂ x̃2 + F(x̃)
]

A = 0 (3.7b)

where the filament Rossby number can be absorbed into a rescaled time. Thus, in YBJ
theory, γm is the only dynamically interesting parameter (e.g. Young & Ben Jelloul 1997;
Danioux, Vanneste & Bühler 2015; Asselin & Young 2019; Conn, Callies & Lawrence
2025). This parameter dependence is neatly illustrated by the radiation time scale T10, that
is, the time scale over which the solution decays at the centre of the filament. We plot the
radiation time scale, computed from numerical simulations of a Gaussian filament (see
§ 3.5), in units of inertial periods (figure 2b). There is a simple monotonic structure along
lines of γm = constant. Indeed, (3.7b) implies a linear dependence on Rof in log space.
Whereas, on other lines with γm varying, we observe a more complex non-monotonic
structure. The same plot for the full Klein–Gordon equation (figure 2a) displays similar
parameter dependence but with more complicated behaviour when Rof > 1.

The critical importance of the parameter γm motivates using it as one of the two non-
dimensional numbers spanning the parameter space. Writing the Klein–Gordon equation
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Vary Fixed non-dimensional number γm → 0 limit γm → ∞ limit

cm Rof High mode, weakly stratified Low mode, strongly stratified
f or L f αm Rapidly rotating, broad filament Non-rotating, sharp filament
�V Bum Strong filament Weak filament

Table 3. Distinguished limits achieved by fixing three of the four dimensional parameters and sending the
fourth to 0 or ∞.

in the form (3.7a) suggests using the filament Rossby number as the second non-
dimensional number and by default this is what we do (see, e.g. figures 2 and 4). However,
this is not the only choice. Indeed, there are at least two other interesting choices that
warrant comment. Of the four dimensional parameters defining this problem two are
velocity scales, cm and�V , and the length and time scales may be combined to form a third
velocity scale, f L f . We can define three non-dimensional parameters that are independent
of one of these velocity scales. The filament Rossby number (which is independent of cm)
is the first of these, the second is the filament Burger number (which is independent of
�V ) and the third is

αm := �V

cm
(3.8)

that is independent of f and L f . These three parameters are related through γm :

Bumγ
−1
m ≡ Rof ≡ α2

mγm . (3.9)

By fixing one of these three parameters and then sending γm → 0 or γm → ∞, six
physically interesting distinguished limits can be reached. For example, suppose that
we wish to study the strongly stratified limit, then we fix the values of f , L f and �V
before sending cm → ∞. However, this is simply the distinguished limit γm → ∞ with
Rof fixed. Alternatively, the sharp filament limit L f → 0 with f , cm and �V fixed is
the distinguished limit γm → ∞ with αm fixed. The six distinct distinguished limits are
summarised in table 3 and figure 2(b).

3.3. The WKBJ approximation – γm � 1
We begin by considering the regime in which the WKBJ approximation is valid, namely
γm � 1. Here, we recall some standard ray-tracing results. However, in Appendix A we
give a formal WKBJ derivation in the limit γm → 0 considering the three distinguished
limits summarised in table 3. The solution is expressed in terms of a slowly varying
amplitude and rapidly varying phase

X = Aeiθ + c.c. (3.10)

Then, with non-dimensional frequency ω̃ := −∂θ/∂ t̃ , which given the steady background
flow is conserved along rays, and local wavenumber k̃ := ∂θ/∂ x̃ , (3.7a) admits the
dispersion relation

ω̃2 − 1 = Rof
[F(x̃)+ γmk̃2] (3.11a)

and the group velocity is

c̃g := ∂ω̃

∂ k̃
= Rof γm

k̃

ω̃
. (3.11b)
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Notably, as the waves radiate away from the centre of the filament, to conserve ω̃, k̃
becomes O(γ−1/2

m ), i.e. the waves have spatial scale
√
γm L f . The YBJ versions of

(3.11) are

ω̃(YBJ ) = 1 + 1
2

Rof
[F(x̃)+ γmk̃2], c̃(YBJ )

g = Rof γmk̃. (3.12a,b)

In both cases the transport equation is

∂

∂ t̃
(A2)+ ∂

∂ x̃

(
c̃g A2)= 0. (3.13)

We note that ω̃(YBJ ) is the expansion of ω̃ to O(Rof ) and that c̃(YBJ )
g is (3.11b) but using the

leading-order, i.e. ω̃= 1, expression for the frequency. Consequently, if we apply the YBJ
approximation when high frequency waves are being radiated then the group velocity will
be overpredicted and the wave energy radiated too rapidly.

We now compute expressions for T10 and T (YBJ )
10 under the WKBJ approximation. We

start by computing the travel time of a ray originating at x̃ = x̃0. Using the dispersion
relation (3.11a) to eliminate k̃ from the group velocity (3.11b), we have

c̃2
g =

(
dx̃

dt̃

)2

= Rof γm
ω̃2 − (1 + Rof F(x̃))

ω̃2 . (3.14a)

As the initial conditions are uniform, we have k̃ = 0 at t̃ = 0 and, thus, the frequency
satisfies

ω̃2 = 1 + Rof F(x̃0). (3.14b)

It then follows that the travel time τ̃ of a ray from x̃0 > 0 to x̃ > x̃0 is

τ̃ (x̃; x̃0)= Ro
− 1

2
f γ

− 1
2

m

∫ x̃

x̃0

√
Ro−1

f + F(x̃0)

F(x̃0)− F(x̃ ′)
dx̃ ′. (3.14c)

The equivalent YBJ calculation gives

τ̃ (YBJ )(x̃; x̃0)= Ro−1
f γ

− 1
2

m

∫ x̃

x̃0

1√
F(x̃0)− F(x̃ ′)

dx̃ ′, (3.15)

which is the leading-order term of (3.14c) in the small Rof limit.
To compute T10, we must consider rays close to the centre of the filament where F(x̃)=

F(0)+ (1/2)F ′′(0)x̃2 + h.o.t.. Here, F ′′ := ∂2F/∂ x̃2. Inserting this into (3.14c) we get

Ro
1
2
f γ

1
2

m τ̃ (x̃; x̃0)≈
∫ x̃

x̃0

√√√√ Ro−1
f + F(0)

1
2F ′′(0)

(
x̃2

0 − x̃ ′2) dx̃ ′ =
√√√√Ro−1

f + F(0)
1
2F ′′(0)

arccosh
(

x̃

x̃0

)
.

(3.16)
From this expression we see that rays originating near the centre of the filament fan out
uniformly in the sense that τ(x̃; x̃0)= τ(x̃/x̃0). The transport equation (3.13) implies that
the total wave amplitude squared between any two rays is conserved. That is, if a(t̃) and
b(t̃) are two rays with initial positions a0 and b0 then

d
dt̃

∫ b(t̃)

a(t̃)
A2 dx̃ = 0 =⇒ d

dt̃

∫ b0

a0

A2 dx̃

dx̃0
dx̃0 = 0 =⇒

∫ b0

a0

A2 dx̃

dx̃0
dx̃0 = const. (3.17)
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Not only does this hold for all rays but these rays are fanning out uniformly and, hence,
dx̃/dx̃0 is independent of x̃0. It therefore follows that, for the amplitude to drop by a factor
of 10, we require x̃/x̃0 = 102 = 100. Thus, we have

T̃10 := f T10 = Ro
− 1

2
f γ

− 1
2

m

√√√√Ro−1
f + F(0)
1
2F ′′(0)

arccosh(100) (3.18a)

and

T̃ (YBJ )
10 := f T (YBJ )

10 = Ro−1
f γ

− 1
2

m
1√

1
2F ′′(0)

arccosh(100). (3.18b)

Comparing these ray-tracing results for the full Klein–Gordon and YBJ versions of the
problem, we conclude that we may divide the γm � 1 regime into two subregimes (IA and
IB) dependent on the Rossby number. Regime IA is the regime γm � 1, Rof � 1 where the
YBJ approximation is valid. On the other hand, regime IB is the regime γm � 1, Rof � 1
and the YBJ approximation is not valid. These conclusions regarding the validity of the
YBJ approximation are corroborated by the formal asymptotic analysis in Appendix A. In
the two subregimes the radiation time scale, T̃ := f T , scales as

T̃ ∼
⎧⎨
⎩γ

− 1
2

m Ro−1
f , Rof � 1,

γ
− 1

2
m Ro

− 1
2

f , Rof � 1.
(3.19)

In both subregimes the radiation time scale is a decreasing function of both the Rossby
number and tunnelling parameter.

3.4. The delta-function limit – γm � 1
We now consider γm � 1. From (3.7a), we see that, to leading order, NIWs will not vary
on the filament scale or the dispersive term, γm∂

2/∂ x̃2, would be unbalanced. Thus, our
previous choice of spatial non-dimensionalisation, by L f , is no longer appropriate. We
choose a new non-dimensionalisation by defining

x̌ := x

Lm
, Lm := γm L f ≡ c2

m

f�V
. (3.20a,b)

Multiplying (3.7a) through by γm we have[
α−2

m

(
1 + ∂2

∂ t̃2

)
− ∂2

∂ x̌2 + γmF(γm x̌)

]
X = 0. (3.21a)

This choice of non-dimensionalisation has achieved two things. Firstly, we have cleared
the coefficient of the spatial derivatives and, secondly, the filament is now in the form of a
nascent delta-function. As γm → ∞,

γmF(γm x̌)→ δ(x̌). (3.21b)

We first study the distinguished limit in which αm is held constant. This is the most
natural interpretation of the delta-function limit as it corresponds to sending L f → 0 with
cm , f and�V held fixed. We consider the other distinguished limits summarised in table 3
at the end of the section.

Integrating over the delta-function and requiring that the solution is even, we have the
jump condition ∂X /∂ x̌ = (1/2)X at x̌ = 0+. Redimensionalising, the jump condition is
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Lm∂X /∂x = (1/2)X . Thus, we may interpret Lm as the length scale imposed on the
problem by the delta-function filament through the jump condition.

In Appendix B we derive a solution in the delta-function limit. For t̃ <α−1
m |x̌ |, the

solution is simply X (x̌, t̃)= cos t̃ . Note that in (x̌ , t̃) coordinates, the characteristics of
(3.21a) have slope ±α−1

m and so the points |x̌ |>αmt̃ are beyond the influence of the
filament. For t̃ � α−1

m |x̌ |, the solution is given by

X (x̌, t̃)= cos t̃ − 1
2
αm

∫ t̃−α−1
m |x̌ |

0
J0

(√
(t̃ − t̃ ′)2 − α−2

m x̌2
)

X (0, t̃ ′) dt̃ ′, (3.22a)

where J0 is the zeroth-order Bessel function of the first kind. The solution at any point may
be computed from the history of the solution at the centre of the filament. The solution at
the centre of the filament is

X (0, t̃)= 2
π

∫ ∞

0

1
1 + u2 cos

(
t̃

√
1 + 1

4
α2

mu2

)
du. (3.22b)

For fixed t̃ , as αm → 0, this reduces to the elementary integral (2/π) cos t̃
∫ ∞

0 (1 +
u2)−1du = cos t̃ . Evaluating (3.22b) numerically, we find that, for larger αm , i.e. stronger
filaments, the decay at the centre of the filament is more rapid (figure 3). Furthermore,
we find very good agreement between the analytic delta-function solution and numerical
simulations (see § 3.5) with γm = 5.

For large t̃ , (3.22b) is amenable to the stationary phase approximation and we find that

X (0, t̃)∼
√

8
πα2

mt̃
cos

(
t̃ + π

4

)
. (3.23)

Here, large t̃ means t̃ � max(1, α−2
m ). For O(1) values of αm , the stationary phase

approximation is very good on an inertial time scale (e.g. figure 3b where αm = 2).
Furthermore, when t̃ is large, the solution is an inertial oscillation with a slowly decaying
amplitude. This is a situation in which the YBJ approximation should be expected to
perform well. However, this provides no guarantee that the YBJ approximation will
correctly capture the small t̃ behaviour.

To compare to § 3.3, we again compute the radiation time scale. Here we have T̃ ∼
α−2

m ≡ Ro−1
f γm , which is once again a decreasing function of the Rossby number but now

an increasing function of the tunnelling parameter. More precisely,

T̃10 = 102 × 8
π
α−2

m = 800
π

Ro−1
f γm . (3.24)

However, if α2
m is large then this result may be inaccurate as T̃10 may be too small for the

stationary phase approximation to be valid.
Finally, we consider the other distinguished limits. In particular, we consider γm → ∞

with Rof fixed. The case with Bum fixed can be handled in exactly the same way. The
complicating factor is that α−2

m ≡ Ro−1
f γm → ∞ as γm → ∞. The solution is to utilise

substitution (2.10), X = Ae−it̃ + c.c.,[
Ro−1

f γm

(
∂2

∂ t̃2 − 2i
∂

∂ t̃

)
− ∂2

∂ x̌2 + γmF(γm x̌)

]
A = 0, (3.25a)
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X 
(0

, 
t̃)

(a)

0.5

0

−0.5

−1.0

1.0
X 

(0
, 

t̃)

(b)

0.5

0

−0.5

−1.0

1.0

0 2 4 6 8 10

t̃/2π

α2
m = 0.25

α2
m = 4

γm = 1

γm = 5

Analytic solution

Stationary phase approximation

Figure 3. Solutions X (0, t̃) to the Klein–Gordon equation at x = 0 for (a) α2
m = 0.25 and (b) α2

m = 4. Solid
lines are from the numerical solutions. The dashed black line shows the analytic solution (3.22b) and the dashed
grey line shows the stationary phase approximation (3.23). The time axis is in inertial periods.

and then rescale time. We define ť := Rof γ
−1
m t̃ ≡ α2

mt̃ such that[
Rof γ

−1
m
∂2

∂ ť2
− 2i

∂

∂ ť
− ∂2

∂ x̌2 + γmF(γm x̌)

]
A = 0. (3.25b)

The leading-order solution is thus given by the delta-function solution to the YBJ equation,
i.e. the ∂2/∂ ť2 term does not appear until O(γ−1

m ). That being said, the full Klein–Gordon
delta-function solution is still informative in this case as it just corresponds to the inclusion
of a higher-order term. Finally, we note that the temporal scaling ť ≡ α2

mt̃ introduced here
in the YBJ solution is the same scaling that arose in the stationary phase approximation
(3.23).

Importantly, this scaling analysis means that the delta-function approximation not only
applies in the distinguished limit L f → 0 with cm , f and �V fixed but also in the limit
cm → ∞ with f , L f and �V fixed. In both cases, the radiation time scale is T̃ ∼ α2

m =
Rof γ

−1
m , although in the latter case this time scale is guaranteed to be large. In other

words, when the stratification is sufficiently strong or the vertical wavelength sufficiently
large, the waves, to leading order, have no structure on the filament scale and it takes a
very long time for the presence of the filament to be felt regardless of the strength of the
filament.

3.5. Numerical solutions
To explore the intermediate regime γm = O(1), validate our scalings for the decay at
the centre of the filament and further assess the validity of the YBJ approximation,
we numerically solve the Klein–Gordon and time-dependent Schrödinger equations for
a Gaussian filament F(η)= exp(−η2/2)/

√
2π (figure 1a). Details of the numerical

schemes can be found in Appendix C. We present the results using the non-
dimensionalisation of § 3.3, t̃ = f t , x̃ = x/L f , and use γm and Rof as coordinates for
the parameter space. For the numerical solutions, the ‘unbounded’ domain has periodic
boundary conditions at x̃ = ±5000 and we use 218 grid points.
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Figure 4. Hovmöller plots of X showing the radiation by an unbound cyclonic filament for varying Rof and
γm . Dashed white lines indicate rays travelling at the mode speed t̃ = ±x̃/

√
Rof γm . The time axis is in inertial

periods.

Regime Limits Spatial non-dimensionalisation Approximation Radiation time scale

IA γm � 1, Rof � 1 x̃ = x/L f WKBJ T̃ ∼ Ro−1
f γ

− 1
2

m

IB γm � 1, Rof � 1 x̃ = x/L f WKBJ T̃ ∼ Ro
− 1

2
f γ

− 1
2

m

II γm � 1 x̌ = x/Lm = x̃/γm Delta-function T̃ ∼ α−2
m ≡ Ro−1

f γm

Table 4. Spatial non-dimensionalisations, approximations and scalings for the decay time scale at the centre
of the filament in the different regimes of the unbounded radiation problem.

From a suite of 12 Klein–Gordon simulations (figure 4), we observe, for fixed Rof ,
a transition in behaviour from wave radiation for small γm to a more spatially coherent
decaying response for large γm . We also observe that, for fixed γm , increasing Rof leads to
more rapid decay in the filament. However, the more interesting dependence is on γm . The
scalings derived earlier and summarised in table 4 predict that the radiation time scale is
a decreasing function of γm , T̃ ∼ γ

−1/2
m , for small γm and an increasing function T̃ ∼ γm

for large γm . We should therefore expect the most rapid radiation for some intermediate
value of γm . This is exactly what we observe in the simulations with the most rapid
radiation occurring for the γm = 0.1 simulations. For a large Rossby number, this radiation
can be extremely rapid. For example, for γm = 0.1, Rof = 10 (figure 4b), the solution at
the centre of the filament becomes negligibly small in less than two inertial periods. It
should be noted that these values are quite reasonable in some regions of the world’s
oceans. With Rof = 10 the geostrophic velocity gradient at the centre of the filament is
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∂V/∂x = (10/
√

2π) f ≈ 4.0 f , well within the range of values simulated by Schlichting
et al. (2023) for example.

Plotting T̃10, computed by running numerical simulations until the stopping criterion
(3.2) is reached, as a function of γm for various Rof (figures 2 and 5a) once again
highlights the monotonic dependence on Rossby number but non-monotonic dependence
on the tunnelling parameter. However, there is a significant and sharp drop in T̃10 as we
transition to intermediate values of γm . In particular, the transition into regime II, which,
for Rof � 1, occurs at γm ≈ 0.4, is abrupt and T̃10 is very sensitive to the value of γm
around this point. To validate our predictions for the radiation time scale, we should be
able to make the curves collapse by appropriately rescaling the axes. Therefore, we let
Y = Roa

f T̃10 and X = Rob
f γm , where a and b are exponents to be determined. In each of the

three subregimes we have scalings for T̃ in terms of γm and Rof (table 4). Eliminating γm
gives the following relationships between Y and X for regimes IA, IB and II respectively:

Y 2 ∼ Ro(2a+b−2)
f X−1, Y 2 ∼ Ro(2a+b−1)

f X−1, Y ∼ Ro(a−b−1)
f X. (3.26a–c)

To make the curves collapse, we must eliminate Rof . For small Rof , subregimes IA and
II apply and, thus, we require a = 1 and b = 0. Whereas for large Rof , regimes IB and
II apply and we require a = 2/3 and b = −1/3. Applying these rescalings to the axes
(figures 5b and 5c) we find that the curves do indeed collapse. Furthermore, by plotting
the asymptotic predictions for T̃10 from (3.18) and (3.24) on top of the numerical results
we find excellent agreement.

To further assess the validity of the YBJ approximation as a function of γm and Rof ,
we plot the difference between the YBJ approximation and Klein–Gordon solutions in
figure 6. For small Rof , the YBJ approximation performs well for all values of γm .
For larger Rof , when γm is small, we observe differences. Notably, the YBJ solution
radiates waves outside of the region bounded by the mode speed, t̃ = ±x̃/

√
Rof γm (white

dashed lines in figure 6). This is a manifestation not just of the overprediction of the
group velocity highlighted in § 3.3 but also of the fact that the Klein–Gordon equation is
hyperbolic and propagates information at a finite speed (the mode speed) whereas the time-
dependent Schrödinger equation is only first-order in time and can propagate information
at any speed. However, when γm = 10, the YBJ approximation performs well even for
Rof = 10. This is consistent with our analysis in § 3.4 as for γm = Rof = 10, α2

m = 1 is not
large. Furthermore, the YBJ prediction for the radiation time scale (figure 2) shows good
agreement with the Klein–Gordon prediction when γm � 1 and αm < 1. These results and
the earlier analysis suggest that the YBJ approximation is valid when γm � 1 and Rof � 1
or γm � 1 and αm � 1. If we assume that the validity criterion smoothly transitions across
γm = O(1), as figure 2 suggests it should, then we can say that the YBJ approximation
should be valid whenever

Rof � 1 + γm . (3.27)

3.6. Summary
In this section we considered the lateral radiation of a single vertical mode with no initial
horizontal structure out of a cyclonic filament into an unbounded domain. The problem is
described by a 2-D parameter space. There are two regimes distinguished by the tunnelling
parameter γm . For small γm , a WKBJ approximation is permissible and we identify the
filament Rossby number Rof as the most useful choice for the second non-dimensional
parameter. In particular, for small Rof , the YBJ approximation is valid. For large γm ,
the filament may be treated as a delta-function and we derive an analytic solution. In this
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Figure 5. Time scale for the decay of velocity at the centre of the filament as a function of γm for various Rof .
In (a) the time axis is in inertial periods. By appropriately rescaling the axes for small (b) and large (c) Rof
the curves may be made to collapse. Dashed black lines indicate the radiation time scales (3.18) computed for
regimes IA and IB. Dotted black lines indicate the radiation time scale (3.24) predicted by the stationary phase
approximation for regime II.

regime the most useful choice for the second parameter is α2
m = Rof /γm , which determines

the validity of the YBJ approximation. A stationary phase approximation reveals that at
large times the solution in the filament decays as α−1

m t̃−(1/2). A particularly important
result comes from the distinguished limit γm → ∞, α2

m → 0 with Rof held constant. In
this limit, which may be achieved by sending the mode speed to infinity, we find that the
filament, however large the Rossby number, is only felt by the inertial oscillations on very
long time scales. Finally, we find that the decay at the centre of the filament is fastest
for intermediate values (0.1 − 1) of γm and, for large but realistic values of the filament
Rossby number, this decay can occur on inertial time scales. This ‘Goldilocks’ effect where
the most efficient radiation for a given background flow (i.e. fixed values of �V , L f , f
and N ), occurs for waves with just-the-right vertical scale is a recurring theme both of this
paper and of previous studies of NIW-mean flow interactions (Balmforth et al. 1998; Klein
& Llewellyn Smith 2001; Danioux et al. 2015).

4. Cyclonic filament and anticyclonic eddies
Now we move towards a more realistic set-up and introduce an additional length scale
associated with the spacing between cyclonic filaments, i.e. the width of the anticyclonic
regions. We take the same cyclonic filament and place it in an otherwise anticyclonic flow
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Figure 6. Hovmöller plots of the difference between the YBJ and Klein-Gordon solutions for varying Rof and
γm . Dashed white lines indicate rays travelling at the mode speed t̃ = ±x̃/

√
Rof γm . The time axis is in inertial

periods.

(figure 1b). The background shear is given by

1
f

∂V

∂x
= Roac + �V

f L f︸ ︷︷ ︸
Rof

F
(

x

L f

)
, (4.1)

where −1< Roac < 0 is the Rossby number of the anticyclonic region. Then we impose
periodic boundary conditions at x = ±Lx and require that the mean vorticity is zero
implying that Roac = −(1/2)�V/ f Lx . This constraint means that we have only added one
additional degree of freedom to the problem, which is now defined by five dimensional
parameters: cm , f , L f , �V and Lx . We require three non-dimensional parameters.
A particularly useful one is

ξ := Lx

L f
� 1, (4.2a)

which we can use to express the relationship between the two Rossby numbers

Rof ≡ 2ξ |Roac|. (4.2b)

4.1. Reduction to the radiation problem
If we may ignore the boundary conditions then this problem is equivalent to the unbounded
radiation problem considered in § 3. However, we must account for the change in the
background flow away from the filament. Separating out the constant anticyclonic part
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Figure 7. Hovmöller plots showing the evolution of NIWs interacting with a cyclonic filament in an otherwise
anticyclonic flow. The parameters have been chosen to be dynamically equivalent to figure 4(a–d). Dashed
white lines indicate rays travelling at the free wave speed. The left time axis is normalised by the period of a
wave with frequency equal to the effective Coriolis frequency of the anticyclonic region. The right time axis is
in inertial periods.

of the background flow, the Klein–Gordon equation (2.5) can be written as[(
1 + Roac + ∂2

∂ t̃2

)
− c2

m

f 2
∂2

∂x2 + Rof F
(

x

L f

)]
X = 0. (4.3a)

Now we rescale time by defining t̂ := √
1 + Roact̃ ≡ f (ac)

eff t , where

f (ac)
eff := f

√
1 + Roac < f (4.3b)

is the effective Coriolis frequency (2.2b) of the anticyclonic region. Finally, we proceed
as in § 3.3 by non-dimensionalising space by L f , x̃ := x/L f , and dividing (4.3a) by Rof
to get [

1 + Roac

Rof

(
1 + ∂2

∂ t̂2

)
− γm

∂2

∂ x̃2 + F(x̃)
]

X = 0. (4.3c)

This is identical to (3.7a) up to a redefinition of the Rossby number. Crucially, the key
dimensionless number, the tunnelling parameter γm , appears unchanged.

Consider the top row of figure 4 in which we looked at the unbounded radiation
problem with Rof = 10 for various γm . We can reproduce those results in the current
set-up, assuming the boundary conditions are not important, by using the same
γm values and choosing Roac and Rof such that Rof /(1 + Roac)= 10. We do this
for Roac = −1/6, Rof = 50/6 =⇒ ξ = 25 (figures 7a–7d) and Roac = −(1/2), Rof = 5
=⇒ ξ = 5 (figures 7e–7h). We observe that figures 7(a) and 7(b) are essentially identical
to figures 4(a) and 4(b). Note that this comparison is aided by the fact that in figure 4 we
plot the solutions for |x̃ |� 25 and that in figures 7(a)–7(d) we impose periodic boundary
conditions at x̃ = ±25. Furthermore, figure 7(e) is the same as figures 4(a) and 7(a) but
zoomed in along the x̃ axis as the periodic boundary conditions are enforced at x̃ = ±5.
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This similitude is a manifestation of the dynamical equivalence of these two problems
when the boundaries are not influencing the flow.

In order for the boundary conditions to not affect the flow we require that Lx be much
larger than the important length scales of the radiation problem. First, we have Lx �
L f by construction. Another important length scale, derived from the mode speed, is the
Rossby radius, cm/ f , which determines the distance that the Klein–Gordon equation can
propagate on an inertial time scale. If Lx � cm/ f then it takes a long time for filament
to feel the influence of the boundary conditions. Moving from figures 7(a) to 7(d) or
from figures 7(e) to 7(h), corresponds to an increase in cm with the other parameters held
constant. As cm is increased, the solutions diverge from figures 4(a) to 4(d) and tend
towards uniform inertial oscillations. Notably, these oscillations are inertial, i.e. they have
dimensional period 2π/ f not 2π/ f (ac)

eff , and do not decay in time. The other key length
scale in the radiation problem was Lm and we find that the ratio of Lm to Lx is the key
non-dimensional number in the following sections.

4.2. Horizontal modes
We now consider the cases for which the boundary conditions are important. Here and
throughout the rest of the paper, it is most convenient to non-dimensionalise space by the
half-width of the domain Lx . Therefore, we define

x̂ := x

Lx
(4.4a)

and we non-dimensionalise the lateral geostrophic shear with a factor of |Roac|, i.e.

∂ V̂

∂ x̂
:= |Roac|−1 1

f

∂V

∂x
= −1 + 2ξF(ξ x̂), (4.4b)

where again ξ := Lx/L f . This implies that we have non-dimensionalised the geostrophic
velocity using the velocity scale (1/2)�V . Once more using the temporal non-
dimensionalisation t̃ := f t , we write the Klein–Gordon equation as[

|Roac|−1
(

1 + ∂2

∂ t̃2

)
− Γm

∂2

∂ x̂2 + ∂ V̂

∂ x̂

]
X . (4.5)

The three dimensionless parameters describing the problem are

|Roac| := 1
2
�V

f Lx
, Γm := 2

cm

�V

cm

f Lx
≡ 2

Lm

Lx
, ξ := Lx

L f
� 1. (4.6a–c)

The tunnelling parameter γm , filament Rossby number Rof and αm may be expressed in
terms of these parameters as

γm := Lm

L f
≡ 1

2
ξΓm, Ro f ≡ 2ξ |Roac|, α2

m := Rof

γm
≡ �V 2

c2
m

≡ 4
|Roac|
Γm

. (4.7a–c)

The imposition of periodic boundary conditions allows us to expand X into discrete
normal modes

X =
∞∑

n=0

Xneiω̃n t̃ + c.c., (4.8a)
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where each mode satisfies[
|Roac|−1(1 − ω̃2

n

)− Γm
∂2

∂ x̂2 + ∂ V̂

∂ x̂

]
Xn. (4.8b)

We have a periodic Sturm–Liouville eigenvalue problem, more precisely the one-
dimensional time-independent Schrödinger equation, which we may rearrange into the
standard form [

−Γm
∂2

∂ x̂2 + ∂ V̂

∂ x̂

]
Xn = λnXn, (4.9)

where λn is the nth eigenvalue. The problem is mathematically equivalent to the well-
studied quantum mechanics problem of a particle in a one-dimensional crystal lattice.
The eigenvalue problem is independent of |Roac|. However, the relationship between the
frequency and the eigenvalues

ω̃2
n = 1 + |Roac|λn (4.10a)

does depend on |Roac|. If we were to make the YBJ approximation (2.10) then we would
arrive at the exact same eigenvalue problem, but the frequency, including the carrier
inertial oscillation, would be given by

ω̃(YBJ )
n = 1 + 1

2
|Roac|λn. (4.10b)

Furthermore, consider the role of the parameter ξ . It only appears in (4.9) through
∂ V̂ /∂ x̂ . It is a parameter that determines the shape, but not strength (which is determined
by |Roac|), of the background lateral shear. There are some results that hold for any ∂ V̂ /∂ x̂ .
In these cases the only remaining parameter is Γm .

One such result is a useful expression for the derivative of the eigenvalues with respect
to Γm . Let 〈·〉 := (1/2)

∫ 1
−1 dx̂ be the domain average. Consider 〈Xn(∂(4.9)/∂Γm)〉:

−
〈
Xn
∂2Xn

∂ x̂2

〉
+

〈
Xn

[
−Γm

∂2

∂ x̂2 + ∂ V̂

∂ x̂

]
∂Xn

∂Γm

〉
=

〈
λnXn

∂Xn

∂Γm

〉
+ ∂λn

∂Γm

〈Xn
2〉. (4.11)

The linear operator is self-adjoint, with respect to the inner product defined by the domain
average, and so the second term on the left cancels the first term on the right. Manipulating
what is left gives

∂λn

∂Γm
=

〈X ′
n

2〉〈Xn
2〉 , (4.12)

where X ′
n := ∂Xn/∂ x̂ . As a corollary, we note that all the eigenvalues, and hence

frequencies, are increasing functions of Γm .

4.3. The minimum frequency mode

4.3.1. Bounds
The minimum frequency mode, i.e. the eigenmode with the smallest eigenvalue, is the
zeroth mode and is special in that the solution has no zero crossings. This allows us to
derive bounds on the minimum frequency. Since X ′

0 is periodic, X ′′
0 := ∂2X0/∂ x̂2 must
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take both signs somewhere in the domain. It then follows from (4.9) that ∂ V̂ /∂ x̂ − λ0 must
also take both signs. This implies the lower bound λ0 >minx̂ ∂ V̂ /∂ x̂ = −1. To derive an
upper bound, divide (4.9) by X0 and average to get

− Γm

〈
1
X0

∂2X0

∂ x̂2

〉
+

〈
∂ V̂

∂ x̂

〉
= λ0 =⇒ λ0 = −Γm

〈(X ′
0

X0

)2
〉

+
〈
∂ V̂

∂ x̂

〉
<

〈
∂ V̂

∂ x̂

〉
= 0,

(4.13)
where the second equality follows from integration by parts and the periodic boundary
conditions. Together these bounds are

− 1< λ0 < 0 =⇒ 1 + Roac < ω̃
2
0 < 1. (4.14)

These are again examples of results that hold for arbitrary periodic background states.
Redimensionalising, we can in general say that the minimum frequency ω0 must satisfy

min
x

f 2
eff(x) < ω

2
0 <mean

x
f 2
eff(x). (4.15)

We now consider a couple of cases where we can make analytic progress with a focus on
the minimum frequency mode.

4.3.2. The WKBJ regime – γm � 1
In the regime γm ≡ (1/2)ξΓm � 1 we may again utilise a WKBJ approximation. In the
interests of brevity, we assume that the filament is symmetric and so we need only solve
over 0< x̂ < 1. If we further assume that the filament has a single maximum, like the
Gaussian filament, then we have a classic two turning point eigenvalue problem as found
in Bender & Orszag (1999). We define the slowly varying wavenumber for mode n,

k̂n(x̂; λn) :=
√

| − 1 + 2ξF(ξ x̂)− λn|
Γm

, (4.16)

that is determined by the eigenvalue and the local (non-dimensional) vorticity of the
background flow. Enforcing even boundary conditions the solution is

X2n =
⎧⎨
⎩C1k̂−1/2

2n cosh
(∫ x̂

0 k̂2n(x̂ ′)dx̂ ′
)
, 0 � x̂ < x̂∗

C2k̂−1/2
2n cos

(∫ 1
x̂ k̂2n(x̂ ′)dx̂ ′

)
, x̂∗ < x̂ � 1,

(4.17)

where x̂∗ is the turning point defined by k̂2n(x̂∗; λ2n)= 0 assuming one exists. The
eigenvalues are determined by the connection formula across the turning point,

1
2

e−2A2n = tan
(π

4
− B2n

)
, (4.18a)

where

A2n :=
∫ x̂∗

0
k̂2n(x

′)dx ′, B2n :=
∫ 1

x̂∗
k̂n(x

′) dx ′. (4.18b,c)

A brief derivation of these formulae is given in Appendix D. We also show that B2n is
bounded. In particular, B2n < nπ + π/4. Rewriting (4.18b,c), we have√

Γm B2n =
∫ 1

x̂∗

√
λ2n + 1 − 2ξF(ξ x ′) dx ′. (4.19)
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Figure 8. Minimum frequency eigenvalues and eigenmodes for a Gaussian vorticity filament. (a) Eigenvalue as
a function of Γm for different ξ including theoretical results as ξ → ∞. The right axis is the frequency squared
(4.10a) for |Roac| = 0.5. Dashed grey lines indicate the upper and lower bounds (4.14). (b) Minimum frequency
computed using the Klein–Gordon equation (solid line, 4.10a) and YBJ approximation (dashed line, 4.10b) for
ξ = 10 and |Roac| = 0.5. (c) Large Γm behaviour of the eigenvalues. Using the delta-function solution λ0Γm
tends to a constant −1/3 (grey dashed line). (d) Structure of the lowest frequency modes for ξ = 10 and four
values of Γm .

As Γm → 0, this integral must vanish and the only way this can occur is if λ2n → −1.
Therefore, all the modes, including the zeroth mode, will, for vanishingly small Γm ,
achieve the lower bound for the minimum frequency derived earlier. For analytic filament
structure functions F , including the Gaussian filament, this also requires x̂∗ → 1 and the
region in which the solution is wavelike becomes increasingly localised. Furthermore, in
this limit the A2n integral is very large and the zeroth mode has B0 → π/4 and in the
anticyclonic region X0(x̂)= cos(π/4 − ∫ x̂

x̂∗ k̂dx ′). One can check that the low horizontal
modes become exponentially small in the centre of the filament (D7, D10 and figure 8d).
We also note that, as Γm → 0, the leading-order correction to the minimum frequency
is O(|Roac|) (figure 8a) and that there will be O(|Roac|) differences between the YBJ
approximation to the frequency and the exact value (figure 8b).

In this regime we have made no assumption about the value of ξ , indeed the WKBJ
approach works for arbitrary ∂ V̂ /∂ x̂ . We only require γm � 1. However, since ξ � 1,
in this regime we must have Γm ≪ 1. Unless we also have |Roac|≪ 1, c2

m/ f 2L2
x ≡

|Roac|Γm � 1 and, thus, we are in the regime discussed in § 4.1 in which Lx is large
compared with both Rm and Lm and the boundary conditions are not important. This is
reflected in the fact that the eigenvalues are densely packed near to the minimum and
that the projection onto horizontal modes is a very inefficient method for representing the
solution (figures 9a and 9d).
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Figure 9. Projection of the uniform initial condition X = 1 onto even horizontal modes for ξ = 10 and various
Γm . The first five horizontal modes and their sum are plotted for points in (a) the WKBJ regime, Γm = 0.005
=⇒ γm = 0.1, and (b) the tunnelling regime, Γm = 0.5 =⇒ γm = 10. (c) Energy content of the even horizontal
modes and (d) frequency squared for |Roac| = 0.5 for four values of Γm .

4.3.3. The strong dispersion regime – Γm � 1
For large Γm , the spatial derivatives in (4.9) – the dispersive term – are multiplied by
a large parameter that acts to suppress spatial variations in the zeroth mode. For the
higher modes, the large contribution from the spatial derivatives can be balanced by a
large eigenvalue. However, the eigenvalue of the zeroth mode is bounded (4.14) and as Γm
gets larger the zeroth mode becomes more uniform. Young & Ben Jelloul (1997), and later
Conn et al. (2025), derive a result, known as the ‘strong dispersion approximation’, that
carries over to the zeroth mode of the Klein-Gordon equation for arbitrary ∂ V̂ /∂ x̂ in this
regime. The idea is to look for a small correction to the uniform state, i.e. the first-order
term in an expansion in Γ −1

m .
Let X0 = 1 + Γ −1

m X (1)
0 + O(Γ −2

m ) and λ0 = 0 + Γ −1
m λ

(1)
0 + O(Γ −2

m ). At O(1), (4.9)
gives

− ∂2X (1)
0

∂ x̂2 + ∂ V̂

∂ x̂
· 1 = 0. (4.20)
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Therefore,

∂X0

∂ x̂
= Γ −1

m V̂ + O
(
Γ −1

m

)
, X0 = 1 − Γ −1

m

∫ x̂

V̂ dx̂ ′ + O
(
Γ −2

m

)
. (4.21a,b)

The leading-order correction to the eigenvalue may be found by considering the secularity
condition at O(Γ −1

m ), but also follows from (4.11),

∂λ0

∂Γ −1
m

= −Γ 2
m
∂λ0

∂Γm
= −Γ 2

m

〈X ′
0

2〉〈X0
2〉 = −〈V̂ 2〉 + O

(
Γ −1

m

)
. (4.22a)

Thus,

λ0 = −〈V̂ 2〉Γ −1
m + O

(
Γ −2

m

)
. (4.22b)

Unwrapping the non-dimensionalisation, the leading-order correction to the frequency is
given by

ω2
0 = f 2(1 + c−2

m 〈V̂ 2〉). (4.23)

We have recovered Young & Ben Jelloul (1997)’s result that the leading-order correction
is proportional to the average kinetic energy of the background flow.

The leading-order correction to the minimum frequency is O(�V 2/c2
m ≡ α2

m). Similar
to the γm → ∞ limit in § 3, we find that in the Γm → ∞ limit the parameter determining
the leading-order behaviour is αm , which does not depend on the length scales of
the background flow. However, unlike in § 3 we cannot look at the distinguished limit
Γm → ∞ with αm held fixed as this would require |Roac| → ∞. This is unphysical as it
results in an inertially unstable background flow (for |Roac|> 1, the minimum frequency
squared can be negative (4.10a)). This limitation means that the leading-order correction
to the minimum frequency will always be small in the strong dispersion regime and, hence,
the YBJ approximation will always be good.

4.4. Delta-function filament
So far we have considered the WKBJ regime, γm ≡ (1/2)ξΓm � 1, and the minimum
frequency mode in the strong dispersion regime, Γm � 1. By construction ξ � 1, but
otherwise these regimes place no restriction on the value of ξ . Indeed these arguments hold
with very few restrictions on ∂ V̂ /∂ x̂ . We now consider a delta-function filament, which
requires L f � Lm (γm � 1) and L f � Lx (ξ � 1) but places no restriction on the ratio of
Lm to Lx . The delta-function filament is therefore reached through the distinguished limit
ξ → ∞ with Γm held fixed. The WKBJ, strong dispersion and delta-function regimes are
summarised in table 5.

Away from the filament the even modes have the form

X2n = cos K2n(1 − x̂) (4.24a)

with

λ2n = −1 + Γm K 2
2n. (4.24b)

The jump condition is ΓmX ′
n = Xn at x̂ = 0+. Therefore, K2n satisfies

K2n tan K2n = Γ −1
m , (4.24c)
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Regime Limits Comments

WKBJ regime Lm � L f � Lx Wave behaviour determined by the local vorticity of the
flow. Normal mode decomposition is a very inefficient
representation of the solution.

Strong dispersion regime L f � Lx � Lm The strong dispersion approximation may be applied to
the zeroth mode. Frequency is determined by the kinetic
energy of the background flow.

Delta-function regime L f � Lx , L f � Lm Admits an analytic solution with no restriction on
Γm := 2Lm/Lx .

Table 5. Summary of the different regimes considered in the periodic problem.

where K2n is the unique solution in (nπ, (n + 1/2)π). For any given filament, the delta-
function approximation will fail for sufficiently large n when the length scale of the waves
becomes too short.

We now consider the limiting behaviours as Γm → 0 and Γm → ∞. For Γm � 1,
let K2n = (n + (1/2))π − Γmk2n + O(Γ 2

m). With this expansion, K2n tan K2n = (n +
(1/2))π/(Γmk2n)+ O(1). Therefore, as Γm → 0,

K2n =
(

n+1
2

)
π − Γm

1(
n+1

2

)
π

+O
(
Γ 2

m

)
, λ2n = −1+Γm

(
n + 1

2

)2

π2 + O
(
Γ 2

m

)
.

(4.25a,b)

In particular, λ0 → −1 as Γm → 0 and, thus, even in the delta-function limit we can
achieve the lower bound on the minimum frequency (figure 8a). However, to be in the
delta-function limit γm � 1 when Γm � 1 we must have ξ ≫ 1. Furthermore, there are
differences in the structure of the eigenmodes in the WKBJ and delta-function regimes as
Γm → 0. For example, consider the phase of the zeroth mode as it enters the filament. In
the delta-function solution, as x̂ → 0, X0 → cos π/2 = 0. Whereas in the WKBJ solution,
at x̂ = x̂∗, X0 ∼ cos B0 = cos π/4, which represents a phase shift of π/4.

For large Γm , we need different expansions for n = 0 and n � 1, highlighting that
the zeroth mode is special. First, n � 1, where we let K2n = nπ + Γ −1

m k2n + O(Γ −2
m ).

Working through the expansion, we find that, for Γm � 1, n � 1,

K2n = nπ + Γ −1
m

1
nπ

+ O
(
Γ −2

m

)
, λ2n = Γmn2π2 + 1 + O

(
Γ −1

m

)
. (4.26a,b)

Note that the eigenvalues are O(Γm) and thus large. To leading order, the frequency is
given by

ω2
2n = n2π2|Roac|Γm = n2π2 c2

m

f 2L2
x
, (4.26c)

which is independent of the properties of the background flow with the exception of the
length scale Lx . Here Lx is setting the length scale of the waves Lw = Lx/nπ and the
frequency is determined by the wave Burger number (cm/ f Lw)2.

For, n = 0, we expand K 2
0 in powers of Γ −1

m , K 2
0 = Γ −1

m a1 + Γ −2
m a2 + O(Γ −3

m ).
We have K0 tan K0 = K 2

0 + K 4
0/3 + O(K 6

0 )= Γ −1
m a1 + Γ −2

m (a2 + a2
1/3)+ O(Γ −3

m ).
Therefore, for Γm � 1,

K 2
0 = Γ −1

m − 1
3
Γ −2

m + O
(
Γ −3

m

)
, λ0 = −1

3
Γ −1

m + O
(
Γ −2

m

)
. (4.27a,b)
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This not only achieves the upper bound λ0 → 0 as Γm → ∞ (figure 8a), but we observe
that the wavenumber K0 → 0 as well. The solution is tending towards a uniform state.
Moreover, the coefficient −1/3 in (4.27a,b) is consistent with the strong dispersion
approximation, i.e. for the sawtooth geostrophic velocity V̂ = sign(x̂)(1 − x̂) associated
with the delta-function filament, we have 〈V̂ 2〉 = 1/3.

The utility of the delta-function filament is not only that it provides an analytical result
for intermediate values of Γm but also that it is a good model for sharp submesoscale
filaments. Solving the eigenvalue problem numerically for the Gaussian filament, we
observe very good agreement between the eigenvalues computed for ξ = 10, 20 and the
theoretical values assuming a delta-function (figure 8a). This is important as these values
are realisable in submesoscale flows, for example, taking |Roac| = 0.5 and ξ = 10, the peak
vorticity is only ∂V/∂x = 3.5 f , and thus, the delta-function filament is a relevant model
for oceanic applications.

4.5. Lateral refraction
In this problem we are considering a discrete spectrum of horizontal modes. Lateral
refraction and the associated horizontal flux of NIW energy are determined by the time
scale over which the different modes dephase, the structure of each mode and their
relative energy content. To understand this process, we look at how the laterally uniform
initial condition X = 1 projects onto horizontal modes. Conveniently, the Sturm–Liouville
problem has a trivial weight function and, thus, the projection onto horizontal modes
satisfies a particularly simple form of Parseval’s theorem,

〈X 2〉 = 1 =
∑

n

〈X 2
n

〉
, (4.28)

where 〈·〉 again denotes a lateral average. For a given vertical mode, X is proportional
to the across-filament velocity and we may interpret 〈X 2

n 〉 as the fraction of the across-
filament kinetic energy contained in the nth horizontal mode. In the strong dispersion
regime, Γm � 1, the initial condition projects almost entirely onto the zeroth mode.
The kinetic energy in the higher modes drops off exponentially (figures 9b and 9c)
and, hence, the solution (e.g. figure 7h) remains nearly uniform even as the different
modes dephase. Even for smaller Γm , the zeroth mode dominates the energy content. For
example, in the case Γm = 0.005, ξ = 10, more than 65 % of the energy is in the zeroth
mode. However, many horizontal modes are required to reproduce the initial condition
(figures 9a and 9c).

The time scale over which the different horizontal modes dephase is determined by the
differences in their frequencies (figure 9d). While these differences are strongly dependent
on Γm and |Roac| (differences in ω̃2

n scale linearly with |Roac|), the refraction time scales
can be of the order of an inertial period (e.g. figure 7b). This is much faster than the
refraction time scales at small Rossby numbers (e.g. Balmforth et al. 1998; Danioux et al.
2015; Rocha, Wagner & Young 2018; Asselin et al. 2020), as one might expect given
the large Rossby numbers in the filament we are considering. This is an important result
because in the submesoscale regime the background flows also evolve on inertial time
scales. However, we find that ζ -refraction can occur even faster. The rapid lateral refraction
and their domination of the energy content means that the zeroth modes dictate the long
time dynamics of the NIWs. With this in mind we now consider how the modes propagate
in the vertical.
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5. Vertical propagation
So far we have been solving a one-dimensional problem and have not needed to concern
ourselves with the structure of the stratification or the vertical modes as the lateral
dynamics of a particular vertical mode are only influenced by the mode speed cm . However,
the vertical propagation of NIW energy does require knowledge of the vertical structure.
Here, we use uniform stratification and assume the NIWs have a plane wave structure
with vertical wavenumber kz for which the mode speed is cm = N/kz . The plane wave
assumption ignores the role of the boundaries. In particular, the group velocity arguments
we make assume that ω is a function of the continuous variable kz , whereas the imposition
of boundary conditions implies discrete vertical modes. These arguments are valid if the
discrete modes sufficiently resolve ω(kz). In practice, this generally means that the high
mode dynamics are well described by plane wave theory but that some caution is required
when considering the lowest modes.

5.1. Group velocity

5.1.1. General expressions
With these choices we can consider the vertical group velocity of a horizontal mode:

cg,n := ∂ωn

∂kz
. (5.1)

However, we can use Γm ≡ c2
m/( f 2L2

x |Roac|), (4.10a) and (4.11) to express the group
velocity as

cg,n ≡ ∂Γm

∂kz

∂ωn

∂Γm
≡ −2N 2|Roac|−1

k3
z L2

x f 2
1

2ωn

∂ω2
n

∂Γm
≡ −N 2

ωnk3
z

1
L2

x

∂λn

∂Γm
≡ − N 2

ωnk3
z

1
L2

x

〈X ′
n

2〉〈Xn
2〉 .
(5.2)

This final expression is reminiscent of the ray-tracing expression for the group velocity
and would be the same if we replaced 〈X ′

n
2〉/〈Xn

2〉 by (kx Lx )
2, where kx is the horizontal

wavenumber. Furthermore, this expression for the group velocity holds for arbitrary
∂ V̂ /∂ x̂ . One of the key motivations for studying ζ -refraction is the intuition that it is
necessary to shrink the horizontal scales of NIWs in order to allow them to propagate
rapidly (Gill 1984; Balmforth et al. 1998). This intuition is based upon the plane wave
dispersion relation and group velocity but we can see that it holds more generally: the
generation of horizontal gradients is critical to the vertical propagation of NIWs.

This expression also holds under the YBJ approximation if we replace ωn by f ,

c(YBJ )
g,n ≡ − N 2

f k3
z

1
L2

x

〈X ′
n

2〉〈Xn
2〉 . (5.3)

As a result, YBJ theory always underpredicts the group velocity of the minimum frequency
mode, since ω0 < f , but overpredicts the group velocity of the super-inertial high modes.

Here we ask: For a given background flow, what wavenumber maximises the magnitude
of the vertical group velocity? It is natural to non-dimensionalise and express the group
velocity in terms of Γm , |Roac| and ξ . For given |Roac| and ξ , we then find the optimal Γm .
The non-dimensional group velocity is given by

ĉg,n := N

f

cg,n

f Lx
= − c3

m

f 3L3
x

1
ω̃n

〈X ′
n

2〉〈Xn
2〉 = −|Roac|3/2ω̃−1

n Γ
3/2

m

〈X ′
n

2〉〈Xn
2〉 . (5.4)

1020 A9-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
63

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10637


J.P. Hilditch, J.R. Taylor and L.N. Thomas

In this expression, there is explicit dependence on both |Roac| and Γm . The contribution
from the horizontal structure

Sn :=
〈X ′

n
2〉〈Xn
2〉 (5.5)

depends only on Γm and ξ , but not |Roac|. The frequency term depends on all
three dimensionless parameters. However, under the YBJ approximation the frequency
dependence drops out,

ĉ(YBJ )
g,n := − N

f

c(YBJ )
g,n

f Lx
= −|Roac|3/2Γ 3/2

m

〈X ′
n

2〉〈Xn
2〉 . (5.6)

Ignoring the frequency term for the moment, we see that Γm has two roles in determining
the group velocity. First, there is the explicit dependence on Γ 3/2

m and second, it determines
the structural contribution Sn .

5.1.2. Delta-function filament
For the delta-function filament, we can compute S2n exactly using (4.24a),

S2n :=
〈X ′

2n
2〉〈X2n
2〉 = K 2

2n

∫ 1
0 sin2 K2n(1 − x̂) dx̂∫ 1
0 cos2 K2n(1 − x̂) dx̂

= K 2
2n

1 − 1
2K2n

sin 2K2n

1 + 1
2K2n

sin 2K2n
. (5.7)

Furthermore, we can use the asymptotic expansions for K2n and ω̃n , in the limit of small
and large Γm , derived in § 4.4 to compute S2n and ĉg,2n in these limits.

However, in all but one case the leading-order term in the expansion for K2n is a
constant. Consequently, S2n also tends to a constant. For example, as Γm → 0, K0 →
π/2 and, thus, S0 → π2/4. In general, as Γm → 0, S2n → (n + (1/2))2π2. Moreover,
ω̃n → √

1 − |Roac| and, hence, ĉg,n ∼ Γ
3/2

m (figure 10a). In the limit of small Γm we have
recovered the familiar k−3

z vertical wavenumber dependence of ray-tracing.
The limit Γm → ∞ is more interesting. For n � 1 (4.26a), K2n → nπ and, thus, S2n →

n2π2. However, in this case the leading-order contribution to the frequency also depends
on Γm , i.e.

ω̃n → nπ |Roac|1/2Γ 1/2
m (5.8a)

and, thus, the group velocity is only linear in Γm ∼ k−2
z (figure 10a),

ĉg,n → −nπ |Roac|Γm ≡ −nπ
c2

m

f 2L2
x
. (5.8b)

Finally, consider the zeroth mode in the strong dispersion regime Γm → ∞. In this limit,
K0 → Γ

−1/2
m =⇒ S0 → (1/3)K 4

0 → (1/3)Γ −2
m (figure 10b). Since ω̃0 → 1, we have

ĉg,0 → −1
3
|Roac|3/2Γ −1/2

m . (5.9)

In the strong dispersion regime the contribution from the horizontal structure is very
sensitive to the vertical wavenumber to the extent that the group velocity is proportional
to kz .

This result for the zeroth mode in the strong dispersion regime generalises to arbitrary
periodic background flows through the strong dispersion approximation. From (4.22a) we
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Figure 10. (a) Non-dimensionalised group velocity of the first five even modes for the Gaussian filament with
Roac = −0.5 and ξ = 10. (b) Horizontal structure contribution S0 to the group velocity of the zeroth mode for
ξ = 10, 25 with asymptotic scalings for the delta-function filament in red and blue. (c) Non-dimensionalised
group velocity of the zeroth mode for ξ = 10 and four values of Roac. Both the Klein–Gordon (5.2, black) group
velocity and the YBJ approximation (5.3, blue) are plotted. The maxima of the group velocities are denoted
by stars. (d) Optimal value of Γm , Γ �m , for radiating NIW energy as a function of ξ−1 for four values of Roac.
Under the YBJ approximation the optimal value is independent of Roac. Green lines in (b) and (d) denote
Γm = 0.956, the location of the maximum of Γ 3/2

m S0 for the delta-function filament.

have S0 → Γ 2
m〈V̂ 2〉 and, thus,

ĉg,0 → −|Roac|3/2〈V̂ 2〉Γ −1/2
m . (5.10a)

Redimensionalising,

cg,0 → − f 〈V̂ 2〉
Ncm

≡ − f 〈V̂ 2〉
N 2 kz, (5.10b)

consistent with Young & Ben Jelloul (1997). We again emphasise that under the strong
dispersion approximation the dynamics are independent of the length scales of the
background flow and that results derived using the YBJ approximation extend to the
Klein–Gordon equation as the zeroth mode frequency tends to f .
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5.1.3. Optimal radiation
The special behaviour of the zeroth mode, i.e. that the group velocity magnitude becomes
a decreasing function of Γm for large Γm , means that there exists an optimal value of
Γm for radiating energy, generalising the findings of Balmforth et al. (1998). We call this
value Γ �m . Thus, for a given background flow, i.e. fixed values of �V , L f , Lx , N and f ,
the optimal vertical wavenumber for radiating NIW energy is

k�z :=
√

2N 2

�V f Lx

1
Γ �m
. (5.11)

Under the YBJ approximation, the group velocity (5.3) factorises into a term depending
on |Roac| and a term depending on Γm (and ξ ) but not |Roac|. As a result, Γ �m is
independent of |Roac| (figures 10c and 10d) and occurs at the maximum of Γ 3/2

m S0. For
the delta-function filament, this maximum occurs at Γ �m = 0.956 with value Γ 3/2

m S0 = 0.20
(figure 10b).

Using the Klein-Gordon group velocity expression with frequency dependence (5.2)
not only increases the group velocity of the zeroth mode but also shifts the location of the
maximum to smaller Γm (figures 10c and 10d). Furthermore, at finite ξ , Γ �m is smaller
than the delta-function value (figure 10d). For the Gaussian filament with ξ = 10 and
Roac = −1, Γ �m is approximately half the delta-function value of 0.956.

The non-monotonic Γm dependence of the zeroth mode group velocity and the
subsequent existence of an optimal Γm for vertically radiating NIW energy mirrors the
γm dependence of the decay time scale of the lateral radiation problem in § 3. Both
problems highlight the importance of O(1) parameter regimes that are not easily tackled
by asymptotic approaches. Notably, this non-monotonic behaviour only occurs for the
zeroth horizontal mode. However, as we argued in § 4.5, for uniform initial conditions,
this mode dominates the energetics even for small Γm . Moreover, the higher horizontal
modes have larger group velocities since Sn is larger and so they propagate away more
quickly leaving the zeroth mode behind. We now demonstrate this explicitly with 2-D
linear simulations.

5.2. Linear simulations
We run 2-D linear simulations studying the evolution of a slab initial condition in the
across-filament velocity,

ui := 1
2

(
1 + erf

(
3 + 2z

H

))
. (5.12)

We project ui onto cosine modes and evolve each vertical mode, with the exception of
the barotropic mode that we discard, according to the Klein–Gordon equation. For the
background flow, we use the Gaussian filament with Roac = −0.5 and ξ = 10. We take the
depth of the domain to be Lz = 0.1Lx and H = 2 × 10−3Lx . We use 512 vertical modes
and 512 horizontal grid points. With u expressed in cosine modes, it is simple to compute
w from continuity and then v and b from (2.1b,d).

In the initial condition the energy content of each vertical mode is a decreasing function
of m, but the shear is maximal at kz ≈ 1/H (figure 11a). We define bulk parameters ΓH
and γH , analogous to Γm and γm , using the shear scale H by

ΓH := 1
|Roac|

N 2 H2

f 2L2
x
, γH := 1

2
ξΓH . (5.13a,b)
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Figure 11. (a) Power spectrum of the initial across-filament velocity (5.12) and vertical shear as a function
of the vertical mode number. The vertical grey line indicates kz = 1/H . (b) Theoretical prediction of the
group velocity (5.2) of the zeroth horizontal mode as a function of the vertical mode number for the three
different values of N/ f simulated. (c–e) Across-filament vertical shear at the centre of the filament. In
(c–e) the x axes are in inertial periods and the y axes are ẑ := z/Lx . White lines indicate a ray moving at
the theoretical maximum group velocity, i.e. the maxima of (b).

N/ f ΓH γH

100 0.08 0.4
250 0.5 2.5
500 2 10

Table 6. Two-dimensional linear simulation parameters.

These bulk parameters best describe the shear containing modes but most of the energy
is contained in lower modes with Γm >ΓH and γm > γH (figure 11a). Having fixed the
value of H/Lx and |Roac|, we vary ΓH by changing the strength of the stratification,
i.e. N/ f . We focus on three cases, N/ f = 100, 250 and 500, which respectively give
ΓH = 0.08, 0.5 and 2 (table 6). These particular choices of N/ f are inspired by the
conditions in the northern Gulf of Mexico and are thus towards the large end of the range
of realistic oceanic values, at least away from the low latitudes. However, the ratio N/ f
has a limited independent value outside of the parameters ΓH and γH . We could achieve
the same ΓH and γH values for different stratifications by adjusting the value of H/Lx .
We discuss the range of realistic values of ΓH and γH in § 6. That being said, N/ f does
have some independent value in that it is used to non-dimensionalise the group velocity
(5.4). Consequently, if we consider two cases with the same ΓH but different stratifications
then the NIW energy will propagate more rapidly in the less stratified case.
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An animation of the evolution of u in the three simulations (see supplementary movie 1
available at https://doi.org/10.1017/jfm.2025.10637) demonstrates the two major effects
of varying the stratification. Firstly, in the N/ f = 100 case we observe beams radiating
down and out from the centre of the filament. This classical behaviour of inertia-gravity
waves is indicative of high frequency waves radiating along rays and occurs because at
low γm , where the zeroth horizontal mode is strongly evanescent in the filament, the
initial condition projects broadly onto horizontal modes. After the beams have propagated
away, we are left with the slower propagating low horizontal modes – primarily the
zeroth mode. The beams are not observed in the higher stratification cases where the
projection onto higher horizontal modes is much weaker, although a weak signal from
the other low horizontal modes, mostly mode 2, can be observed. The stronger tunnelling
in the higher stratification cases is also evidenced by the greater shear amplitude in the
slowly propagating wavepacket at the centre of the filament (figure 11c–e). A higher
frequency wavepacket associated with the second horizontal mode is also present in
figures 11(d) and 11(e).

The second observed effect is the slower propagation of the zeroth mode as the
stratification increases. Plotting the group velocity (5.2) as a function of vertical
mode number, which is proportional to kz , we see that the location of the maximum
group velocity increases with N/ f since the dispersivity is proportional to (N/ f kz)

2

(figure 11b). Furthermore, the magnitude of the maximum group velocity decreases,
which follows from the explicit dependence of the group velocity on N/ f . In other
words, increasing N/ f is equivalent to stretching the group velocity–mode number curve
along the x axis while compressing it down the y axis. The result is that, for the
energy containing low vertical modes, the magnitude of the group velocity decreases
with increasing N/ f . This counter-intuitive dependence on stratification in the strong
dispersion regime (small Γm), first noted by Balmforth et al. (1998), is the opposite
of the behaviour one would predict by naively applying ray-tracing. If the energy were
contained in the high modes then we could apply ray-tracing and we would observe the
opposite behaviour – at high vertical wavenumbers the group velocity is an increasing
function of N/ f (figure 11b). In addition, the slices of the across-filament shear at the
filament centre (figure 11c–e) demonstrate vertically coherent wavepackets radiating at the
maximum group velocity. The maximum is a stationary point of the group velocity and,
hence, wavepackets propagating at the maximum group velocity are weakly dispersive and
able to maintain a coherent spatial structure.

6. Discussion
In this paper we explored the interaction of NIWs with strongly cyclonic vorticity filaments
to which YBJ theory does not necessarily apply. First, we considered the lateral radiation
of a single vertical mode from a cyclonic filament and developed scaling for the decay
of the NIWs in the filament as functions of the tunnelling parameter γm and filament
Rossby number Rof . Then we considered the case of a cyclonic filament in an otherwise
anticyclonic flow in a finite width domain. The problem was approached via a normal
mode decomposition with a focus on the zeroth mode, which has unique behaviour
and, for an initially uniform velocity field, dominates the solution. Finally, the vertical
propagation of the waves was considered by deriving a generic expression for the group
velocity of each normal mode that highlights the importance of gradients in the wave
field. A fruitful approach throughout the paper is to model the sharp filaments as delta-
functions. We find this to be a good model for large yet realistic values of the Rossby
number.
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A recurring theme of the paper is the vastly differing behaviour of the waves as the
mode speed cm , which depends on the stratification and vertical wavelength of the waves,
is varied. The key consideration is how the length scale Lm := c2

m/ f�V compares to the
length scales of the background flow. For waves with short vertical wavelengths such
that the tunnelling parameter γm := Lm/L f is small, WKBJ and ray-tracing ideas may be
applied. Only the local properties of the background flow determine the wave behaviour
and increasing the vertical wavelength leads to more rapid propagation both horizontally
and vertically. However, if the vertical wavelength is large such that the length scale Lm is
larger than the length scales of the background flow then increasing the vertical wavelength
further leads to less rapid radiation as dispersive effects act to smooth the response to
the filament. In the periodic problem this smoothing effect only applies to the zeroth
horizontal mode. But in the strong dispersion regime, Γm := 2Lm/Lx � 1, the zeroth
mode increasingly dominates the solution assuming a uniform initial condition. When
Lm is much larger than length scales of the background flow, i.e. in the limits γm → ∞,
Γm → ∞, the dynamics become independent of the length scales of the background
flow. Indeed, the strong dispersion approximation shows that the only property of the
background flow that matters as Γm → ∞ is the average kinetic energy.

The strongest radiation occurs when Lm is comparable to the length scales of the
background flow. The most efficient lateral radiation out of the filament occurs for O(1)
values of γm . However, if we are more interested in the vertical propagation of NIW energy
then the key parameter is Γm because the uniform initial condition projects mostly onto
the zeroth mode even in the WKBJ regime. The differing dynamics for small and large Γm
means that the group velocity of the zeroth horizontal is maximised at some intermediate
Γ �m = O(1) value.

The importance of both the vertical wavelength and stratification for the propagation
of NIWs was recently highlighted in Thomas et al. (2024) and is a particularly important
consideration in the submesoscale regime where the small horizontal length scales of the
background flow compared with the mesoscale mean that Γm (and γm) will generally
be larger and any intuition honed on ray-tracing may be found wanting. Since these
parameters depend on the vertical wavelength of the waves in addition to the stratification,
velocity and length scales of the background flow a vast range of values can be found
in the ocean. In particular, by allowing the vertical wavelength to tend to zero we can
make Γm arbitrarily small. Conversely, in very weak background flows Γm can be very
large. It is therefore necessary for any given problem to compute for what vertical
wavelengths Γm is large and for what vertical wavelengths it is small. For example,
if we take some reasonable mid-latitude values for the background submesoscale flow
N 2 = 10−5 s−2, f = 10−4 s−1, �V = 10−1 m s−1 and Lx = 104 m, then we find that
Γm = 1 for kz = 10−2 m−1. Therefore, the lowest modes with kz ≈ 10−3 m−1 will have
Γm ≈ 102 and will fall into the strong dispersion regime but the high modes will have
small Γm . One should also expect to find that the fastest radiating waves have vertical
wavelengths of a few hundred metres.

Finally, we comment on some of the physics not included in this study. The set-ups
considered here were designed to isolate and focus upon the effects of vorticity. The
2-D set-up is convenient in that it eliminates advective effects and makes the problem
tractible. However, even though we demonstrated that ζ -refraction can be a very fast
process, advective effects are likely to play an important role at the submesoscale.
Furthermore, while Asselin et al. (2020) found that strain was remarkably unimportant
in the quasi-geostrophic barotropic weak dispersion regime (Γm � 1), their results do
not extend to the submesoscale regime. The other advantage of the 2-D set-up is
that barotropic instability is excluded. The vorticity structures that we considered are
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unstable to barotropic instability according to the Rayleigh–Kuo criterion (Kuo 1949).
Nevertheless, such vorticity structures are observed in the ocean and are sustained through
frontogenetic processes. Thomas (2019) found that the secondary circulations associated
with frontogenesis are themselves able to enhance the vertical radiation of NIWs through a
differential vertical Doppler shift. Lastly, the effects of vertical variations in vorticity, and
baroclinic background flows more generally, were not considered here but are the subject
of ongoing work.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10637.
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Appendix A. Derivation of the ray-tracing equations

A.1. Fixed Rof

Starting from (3.7a) with Rof fixed, we derive the ray-tracing equations by making
a WKBJ approximation in the small parameter ε := √

γm . Introducing a rescaled time
t̀ :=√

Rof ε t̃ ≡ (cm/L f )t we have[
ε2

(
∂2

∂ t̀2
− ∂2

∂ x̃2

)
+ Ro−1

f + F(x̃)
]

X = 0. (A1)

The WKBJ ansatz is

X (x̃, t̀)= exp

⎛
⎝iε−1

∞∑
j=0

ε j S j (x̃, t̀)

⎞
⎠+ c.c. (A2)

At O(ε0) we have the eikonal equation

−
(
∂S0

∂ t̀

)2

+
(
∂S0

∂ x̃

)2

+ Ro−1
f + F(x̃)= 0. (A3)

Introducing pt̀ := −∂S0/∂ t̀ and px̃ := ∂S0/∂ x̃ , (A3) can be solved by the method of
characteristics. The dispersion relation and ray-tracing equations are

p2
t̀ = p2

x̃ + Ro−1
f + F(x̃), (A4a)

dt̀

ds
= 2λpt̀ ,

dx̃

ds
= 2λpx̃ ,

dpt̀

ds
= 0,

dpx̃

ds
= −λ∂F

∂ x̃
pt̀ , (A4b)

where s parameterises the rays and λ is a constant. Equation (A4b) can be combined to
express the conservation of frequency along the rays in (x̃, t̀) space,(

∂

∂ t̀
+ px̃

pt̀

∂

∂ x̃

)
pt̀ = 0, (A5)

1020 A9-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
63

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10637
https://doi.org/10.1017/jfm.2025.10637


Journal of Fluid Mechanics

where px̃/pt̀ = (dx̃/ds)/(dt́/ds) is the group velocity. At O(ε1) we have the transport
equation

i
∂2S0

∂ t̀2
− 2

∂S0

∂ t̀

∂S1

∂ t̀
− i
∂2S0

∂ x̃2 + 2
∂S0

∂ x̃

∂S1

∂ x̃
= 0. (A6)

Making the substitution S1 = −i log A = −(1/2)i log A2, this can be formed into a
conservation law

∂

∂ t̀

(
pt̀ A2)+ ∂

∂ x̃

(
px̃ A2)= 0. (A7)

Utilising (A5) we can manipulate the transport equation into its most useful form

∂

∂ t̀
(A2)+ ∂

∂ x̃

(
px̃

pt̀
A2

)
= 0. (A8)

Unwrapping the temporal rescaling to express the equations in terms of t̃ , x̃ , and phase
θ := ε−1S0 gives the ray-tracing results stated in § 3.3.

A.2. Fixed Bum

We also consider the distinguished limits γm → 0 with Bum or αm fixed. In the former
case, the derivation is exactly the same as above except that the term

Ro−1
f ≡ γm Bu−1

m ≡ ε2 Bu−1
m (A9)

drops out of (A3) and (A4a). In practice however, it is useful to retain this lower-order
term in the dispersion relation as it becomes relevant in the far field as F → 0.

A.3. Fixed αm

The latter case requires more work as

Ro−1
f ≡ γ−1

m α−2
m ≡ ε−2α−2

m (A10)

is large and must be accounted for at leading order. However, this is precisely the case
where YBJ theory applies. Making the substitution (2.10), i.e. X = Ae−it̃ + c.c., (3.7a)
becomes [

α−2
m ε−2

(
∂2

∂ t̃2 − 2i
∂

∂ t̃

)
− ε2 ∂

2

∂ x̃2 + F(x̃)
]

A = 0. (A11)

Here, the appropriate rescaling of time is t́ := α2
mε

3 t̃ giving[
α2

mε
4 ∂

2

∂ t́2
− 2iε

∂

∂ t́
− ε2 ∂

2

∂ x̃2 + F(x̃)
]

A = 0. (A12)

The first term will play no role until O(ε2) and so the YBJ approximation is valid to that
order. The WKBJ ansatz is

A(x̃, t́)= exp

⎛
⎝iε−1

∞∑
j=0

ε j S j (x̃, t́)

⎞
⎠ (A13)

and the eikonal equation is

2
∂S0

∂ t́
+

(
∂S0

∂ x̃

)2

+ F(x̃)= 0. (A14)
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Again applying the method of characteristics, we have the dispersion relation

pt́ = p2
x̃ + F(x̃), (A15a)

and the ray-tracing equations

dt́

ds
= 1,

dx̃

ds
= 2λpx̃ ,

dpt̀

ds
= 0,

dpx̃

ds
= −λ∂F

∂ x̃
pt̀ , (A15b–e)

where pt́ = ∂S0/∂ t́ and px̃ = ∂S0/∂ x̃ . At O(ε1) the transport equation is

2
∂S1

∂ t́
− i
∂2S0

∂ x̃2 + 2
∂S0

∂ x̃

∂S1

∂ x̃
= 0. (A16)

Once again making the substitution S1 = −i log A = −(1/2)i log A2 we immediately get
the conservation law

∂

∂ t́
(A2)+ ∂

∂ x̃

(
px̃ A2)= 0. (A17)

Once more, unwrapping the temporal rescaling to express the equations in terms of t̃ , x̃ ,
and phase θ := ε−1S0 gives the YBJ ray-tracing results stated in § 3.3.

Appendix B. Solution for a delta-function filament
We convert (3.21a) to an integral equation by means of a Green’s function. We write

LKGX =
[
α−2

m

(
1 + ∂2

∂ t̃2

)
− ∂2

∂ x̌2

]
X = −γmF(γm x̌)X . (B1a)

The Klein–Gordon operator LKG has constant coefficients and causal Green’s function

G(x̌ − x̌ ′, t̃ − t̃ ′)=
⎧⎨
⎩

1
2αm J0

(√
(t̃ − t̃ ′)2 − α−2

m (x̌ − x̌ ′)2
)
, t̃ − t̃ ′ >α−1

m |x̌ − x̌ ′|,
0, otherwise,

(B1b)
where J0 is the zeroth-order Bessel function of the first kind (Polyanin & Nazaikinskii
2016). Including a term cos t̃ that satisfies the initial conditions and the homogeneous
Klein–Gordon equation, the solution satisfies

X (x̌, t̃)= cos t̃ −
∫ t̃

0

∫ ∞

−∞
G(x̌ − x̌ ′, t̃ − t̃ ′)γmF(γm x̌ ′)X (x̌ ′, t̃ ′) dx̌ ′ dt̃ ′. (B1c)

We now make the limit γm → ∞ and treat the filament as a delta-function. Evaluating the
spatial integral we have

X (x̌, t̃)= cos t̃ −
∫ t̃

0
G(x̌, t̃ − t̃ ′)X (0, t̃ ′) dt̃ ′. (B2)

Substituting for the Green’s function produces (3.22a).
Setting x̌ = 0 we have an integral equation for the solution at the centre of the filament,

X (0, t̃)= cos t̃ − 1
2
αm

∫ t̃

0
J0(t̃ − t̃ ′)X (0, t̃ ′) dt̃ ′. (B3)

1020 A9-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
63

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10637


Journal of Fluid Mechanics

II I

IVIII

Figure 12. Deformed contour for the Bromwich integral. The original contour is in red but can be deformed
into the orange and blue contour. The branch points are at s = ±i , indicated by black circles and the branch
cuts run along the imaginary axis through infinity. The dashed orange lines indicate contours at infinity. The
four quadrants are indicated by roman numerals.

Taking a Laplace transform, X̂ = ∫ ∞
0 X est̃ dt̃ , converts the convolution into a product

X̂ (0, s)= s

1 + s2 − 1
2
αm

1√
1 + s2

X̂ (0, s). (B4)

The solution can then be expressed as a Bromwich integral

X (0, t̃)= 1
2π i

∫ ς+i∞

ς−i∞
s√

1 + s2

1
1
2αm + √

1 + s2
est̃ ds, (B5)

where the contour is taken over a line Re(s)= ς > 0 that lies to the right of the branch
points at s = ±i.

Connecting the branch points with a branch cut along the imaginary axis through
infinity, we deform the contour as indicated in figure 12. The contour is deformed in this
way so that the dashed orange contours at infinity do not contribute to the integral. This
can be seen by applying Jordan’s lemma to the semi-circular contour and the estimation
lemma to the remaining parts. The small orange contours around the branch points also do
not contribute to the integral. For example, putting s = i + εeiθ , θ ∈ (−π, 0), we find that
the integrand is O(

√
ε) and, hence, the integral vanishes as ε→ 0.

On the blue contours we make a substitution. In the quadrants I and II we put s =
i
√

1 + σ 2, whereas in quadrants III and IV we put s = −i
√

1 + σ 2. In all cases σ ∈ (0,∞).
With this substitution we have

√
1 + s2 = iσ in quadrants I and III and

√
1 + s2 = −iσ in

quadrants II and IV. Summing the four pieces the integral reduces to

X (0, t̃)= 1
2π

∫ ∞

0

⎡
⎣ eit̃

√
1+σ 2

1
2αm + iσ

+ eit̃
√

1+σ 2

1
2αm − iσ

+ e−it̃
√

1+σ 2

1
2αm + iσ

+ e−it̃
√

1+σ 2

1
2αm − iσ

⎤
⎦ dσ (B6)

= 1
π

∫ ∞

0

αm cos
(

t̃
√

1 + σ 2
)

σ 2 + 1
4α

2
m

dσ.

The substitution σ = (1/2)αmu gives (3.22b).
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Appendix C. Numerical solution of the Klein–Gordon and time-dependent
Schrödinger equations
Discretising the spatial derivatives with a fourth-order accurate centred five point finite
difference scheme, the Klein–Gordon equation (3.4) is written as

X t̃ t̃ = −MX , (C1)

where subscripts denote time derivatives and M is a positive definite symmetric matrix
(assuming the flow is not inertially unstable). Similarly, the time-dependent Schrödinger
equation can be written as

At̃ = −1
2

i (M − I )A, (C2)

where I is the identity matrix. We use a three-stage fourth-order diagonally implicit Runge–
Kutta (Nyström) schemes to time step these equations.

For the Klein–Gordon equation, the state variables X n and X n
t̃

are advanced with time
step h according to

X n+1 =X n + hX n
t̃ + h2

3∑
j=1

b jX n+c j

t̃ t̃
, (c3a)

X n+1
t̃

=X n
t̃ + h

3∑
j=1

b′
jX

n+c j

t̃ t̃
, (c3b)

and the intermediate steps are given by the implicit equations

X n+ci =X n + ci hX n
t̃ + h2

i∑
k=1

aikX n+ck
t̃ t̃

. (C3c)

The coefficients are

c1 a11

c2 a21 a22

c3 a31 a32 a33

b1 b2 b3

b′
1 b′

2 b′
3

=

3
5

9
50

9
10

9
40

9
50

6
37

234 657
1 266 325

−891 891
2 532 650

9
50

115
729

55
2457

42 439
132 678

575
1458

550
2457

50 653
132 678

(C4)

and the resulting scheme is unconditionally stable (Sharp, Fine & Burrage 1990).
For the time-dependent Schrödinger equation, the state variable A is advanced

according to

An+1 =An + h
3∑

j=1

b jAn+c j

t̃ t̃
, (C5)

with the intermediate steps given by

An+ci =An + h
i∑

k=1

aikAn+ck
t̃ t̃

. (C6)
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The coefficients are

c1 a11
c2 a21 a22
c3 a31 a32 a33

b1 b2 b3

=

γ γ
1
2

1
2 − γ γ

1 − γ 2γ 1 − 4γ γ

2γ (γ−1)
2γ−1

6γ−1
6γ (2γ−1)

2γ (γ−1)
2γ−1

(C7)

with γ = (3 + 2
√

3 cos (π/18))/6 (Kennedy & Carpenter 2016). This scheme is also
unconditionally stable.

Appendix D. The WKBJ solution
Here we derive the connection formula for the WKBJ solution. The derivation, by
and large, closely follows Bender & Orszag (1999) and uses some intermediate results
given therein. Define Qn(x̂; λn) := (∂V/∂ x̂ − λn)/Γm such that the Schrödinger equation
maybe written as

∂2Xn

∂ x̂2 = Qn(x̂; λn)Xn. (D1)

In § 4.3.2 we defined kn := √|Qn|. Applying even boundary conditions the solutions away
from the turning point are

X2n = C1|Q2n|−1/4 cosh

(∫ x̂

0

√
Q2n dx̂ ′

)
, X2n = C2|Q2n|−1/4 cos

(∫ 1

x̂

√−Q2n dx̂ ′
)

(D2)
for x̂ < x̂∗ and x̂ > x̂∗, respectively. Near the turning point x̂∗ defined by Q2n(x̂∗)= 0 the
Schrödinger equation is the Airy equation

∂2X2n

∂ x̂2 = a3
2n(x̂ − x̂∗)X2n, (D3)

where a3
2n := − (∂Q2n/∂ x̂)

∣∣
x̂∗ > 0. Defining t := a2n(x̂ − x̂∗) the solution near the

turning point is

X2n = CAAi(−t)+ CBBi(−t). (D4)

Near the turning point we have Q2n(x)= −a2
2nt and the solution entering the filament,

t < 0, is

X2n = C1a−1/2
2n (−t)−1/4 cosh

(
A2n − 2

3
(−t)3/2

)
, A2n :=

∫ x̂∗

0

√
Q2n dx̂ ′. (D5a,b)

Comparing to the asymptotic forms of the Airy functions as t → −∞,

Ai(−t)∼ 1
2
√
π
(−t)−1/4 exp

(
−2

3
(−t)3/2

)
, Bi(−t)∼ 1√

π
(−t)−1/4 exp

(
2
3
(−t)3/2

)
,

(D6a,b)

we find the matching conditions.

CA = a−1/2
2n

√
πeA2n C1, CB = 1

2
a−1/2

2n

√
πe−A2n C1. (D7a,b)

1020 A9-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
63

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10637


J.P. Hilditch, J.R. Taylor and L.N. Thomas

Similarly, for t > 0, we have

X2n = C2a−1/2
2n t−1/4 cos

(
B2n − 2

3
t3/2

)
, B2n :=

∫ 1

x̂∗

√−Q2n dx̂ ′ (D8a,b)

and, as t → ∞, the asymptotic forms of the Airy functions are

Ai(−t)∼ 1√
π

t−1/4 sin
(

2
3

t3/2 + π

4

)
, Bi(−t)∼ 1√

π
t−1/4 cos

(
2
3

t3/2 + π

4

)
.

(D9a,b)

Therefore, the matching conditions are

CA = a−1/2
2n

√
π sin

(
B2n + π

4

)
C2, CB = a−1/2

2n

√
π cos

(
B2n + π

4

)
C2. (D10a,b)

Finally, we have the connection formula

CB

CA
= 1

2
e−2A2n = cot

(
B2n + π

4

)
= tan

(π
4

− B2n

)
. (D11)

The left-hand side of this connection formula is bounded 0< (1/2)e−2A2n < (1/2) since
A2n is positive. Furthermore, we know that the 2nth eigenmode of the symmetric periodic
Sturm–Liouville problem has n zero crossing in the half-domain 0< x̂ < 1. Therefore, we
can bound B2n by

nπ + π

4
− arctan

1
2
< B2n < nπ + π

4
. (D12)
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