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Abstract

We derive a moderate deviation principle for word counts (which is extended to counts
of multiple patterns) in biological sequences under different models: independent and
identically distributed letters, homogeneous Markov chains of order 1 and m, and, in view
of the codon structure of DNA sequences, Markov chains with three different transition
matrices. This enables us to approximate P-values for the number of word occurrences
in DNA and protein sequences in a new manner.
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1. Introduction

Recent progress in DNA and protein sequencing stressed the necessity to develop statistical
methods for the analysis of biological sequences. One probabilistic approach to recognise spe-
cial features of DNA or protein sequences is to identify words or motifs which occur significantly
often or rarely. Reinert et al. [19] gave an excellent overview of existing results about statistical
properties of words. Much work has been done to examine the distribution of word counts—both
exact (see [10], [18], [19], and [20]) and asymptotic results are available. Over the past years,
Gaussian (see [17], [19], and [22]), Poisson or compound Poisson (see [19] and [21]), and large
deviation based approximations (see [13] and [19]) have been derived yielding approximate
P-values to assess the statistical significance of word occurrences. However, from a practical
point of view, all approaches have disadvantages: while an exact computation of P-values
for long sequences requires a lot of time and memory capacity, the accuracy of the Gaussian
approximation decreases as the length of the words increases (rare words) and, although the
large deviation approach provides a good approximation for very exceptional words, it cannot
manage with words whose expected count is close to the observed one (see [19, Section 6.7.1]).

In this paper we analyse the moderate deviation behaviour of word counts, i.e. we examine
the regime between the Gaussian and large deviation regimes. Consequently, we assume that
our analysis yields a reasonable approximation for P-values in a moderate deviation regime.
As can be seen in Example 1, the moderate deviation based approximation of P-values for
moderately appearing words indeed performs better than the Gaussian and large deviation
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based approximations. Thus, our approach should be a good compromise for approximating
P-values for word occurrences.

Before stating our main result in Section 2, we now give a survey of the underlying
probabilistic models of biological sequences we use and we introduce the concept of moderate
deviations. Section 3 is devoted to the proof of the main result and in Section 4 we give some
applications in the field of biological sequence analysis.

1.1. Probabilistic models for biological sequences

Usually, a biological sequence, i.e. a DNA or protein sequence, is modelled by a Markov
chain (see, e.g. [7]). Let A be a finite letter alphabet (for DNA sequences, A contains the four
different bases, i.e. A = {A,C,G,T}, and, for protein sequences, the alphabet consists of 20
different amino acids), and let (Xn)n∈N be a sequence taking values in A.

The simplest model (model M0) assumes that the letters Xi are independent and identically
distributed (i.i.d.). While being easy to handle, this model is not very accurate (see, e.g. [2]
and [15]). A more general model (model Mm; see [19]) postulates that (Xn)n∈N is a homo-
geneous Markov chain of order m. In our paper we will mainly focus on the special case
of model M1. To be more precise, we assume that (Xn)n∈N is a homogeneous, first-order
Markov chain with aperiodic and irreducible transition matrix � = (p(a, b))a,b∈A. Note that,
under these conditions, the existence of a stationary distribution, i.e. a distribution µ satisfying
µ� = µ, is guaranteed by the ergodic theorem for Markov chains.

When considering coding DNA sequences, a more refined model (model Mm-3; see [19]
and [22]) takes the so-called codon structure of these sequences into account: three successive,
nonoverlapping bases are translated into one amino acid. In some cases the first two letters of
a codon suffice to determine the corresponding amino acid, i.e. the position within the codon
may have a different importance. We therefore consider a Markov chain (of order m) with three
different transition matrices �k = (pk(a, b))a,b∈A, k = 1, 2, 3.

Now, given an underlying model Mm or Mm-3, m ∈ N0, an alphabet A, and the corre-
sponding random letter sequence (Xn)n∈N, let w = w1 · · · w� be a word of length � taking
values in A and let Yi(w) := 1{Xi=w1,...,Xi+l−1=w�}, i ∈ N, be the indicator function of the set
{w starts at position i in X1 · · · Xn}. Then the word count of w is defined by

N(w) :=
n−�+1∑

i=1

Yi(w).

We are interested in the moderate deviations of N(w) − E N(w).

1.2. Moderate deviations

As mentioned above, the moderate deviations are located between the normal and large
deviations. Formally, we define a moderate deviation principle as follows.

Definition 1. A sequence (Zn)n∈N of real-valued random variables is said to satisfy a moderate
deviation principle (MDP) with rate function I : R → [0, ∞] if (Zn/n

α)n∈N satisfies a large
deviation principle (LDP) with rate function I and speed n2α−1 for all 1

2 < α < 1, i.e. if

(i) I has closed level sets;

(ii) lim supn→∞(1/n2α−1) log P(Zn/n
α ∈ F) ≤ − infx∈F I (x) for all closed subsets

F ⊂ R;

(iii) lim infn→∞(1/n2α−1) log P(Zn/n
α ∈ O) ≥ − infx∈O I (x) for all open subsets O ⊂ R.
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Remark 1. An MDP is often defined on a more general scale bn satisfying bn/n → 0 and
b2
n/n → ∞ (where (bn)n∈N is a sequence of real positive numbers) rather than on a scale

nα, 1
2 < α < 1. However, for our purposes, the scale nα is more illustrative.

The aim of this paper is to derive an MDP for N(w) − E N(w), i.e. to study the behaviour
of

1

n2α−1 log P

(
N(w) − E N(w)

nα
∈ A

)
for open or closed subsets A ⊂ R.

2. Main result

Let w = w1 · · · w� be a word of length �. The set of periods of w is given by

P (w) = {p ∈ {1, . . . , � − 1} : wi = wi+p for all i = 1, . . . , � − p},
e.g. the word ‘ATATAT’ has periods 2, 4, and 6. Occurrences of periodic words may overlap in
a sequence.

The suffix of length q of w is denoted by

w(q) = w�−q+1 · · · w�,

and ww(q) refers to the composite word w1 · · · w�w�−q+1 · · · w�.
Throughout this paper, we will use the notation Eλ and Pλ to emphasise the fact that the

initial distribution has been changed to λ. When λ = δa , we will write Ea and Pa instead,
and when referring to the original initial distribution (which is not specified), we will drop the
index. The main result of this paper is as follows.

Theorem 1. Let (Xn)n∈N be an irreducible, aperiodic, and homogeneous Markov chain with
transition matrix � = (p(a, b))a,b∈A, stationary distribution µ, and finite state space A. Then,
for all w ∈ W := {a1 · · · a� ∈ A� : p(ai, ai+1) > 0 for all i ∈ {1, . . . , � − 1}} and any initial
distribution, N(w)−Eµ N(w) satisfies an MDP with rate function �∗

1(q) = q2/2σ 2
1 (w), where

σ 2
1 (w) = µ1(w) + 2

∑
q∈P (w)

µ1(ww(q)) − (2� − 1)µ2
1(w)

+ 2

µ(w1)
µ2

1(w)

∞∑
k=1

(p(k)(w�, w1) − µ(w1)),

µ1(w) = µ(w1)p(w1, w2) · · · p(w�−1, w�),

and p(k) denotes the k-step transition probability.

Remarks 2. (i) The limiting variance σ 2
1 (w) can be rewritten as

σ 2
1 (w) = µ1(w) + 2

∑
q∈P (w)

µ1(ww(q)) − (2� − 1)µ2
1(w)

+ 2µ2
1(w)

(∑
a∈A

µ(a)ma,w1 − mw�,w1

)
, (1)

where ma,b = Ea τb = Ea(inf{n ∈ N : Xn = b}) is the mean first passage time from state a to
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state b, a, b ∈ A. Firstly, it follows, from [16, Corollary 1] and mw1,w1 = 1/µ(w1), that

1

µ(w1)

∞∑
k=1

(p(k)(w�, w1) − µ(w1)) = m
(2)
w1,w1 + mw1,w1

2mw1,w1

− mw�,w1 ,

where m
(2)
w1,w1 = Ew1 τ 2

w1
. Secondly, we find from [8, Corollary 2.5.5] that

m(2)
w1,w1

+ mw1,w1 = 2mw1,w1

∑
a∈A

µ(a)ma,w1 ,

which proves (1).
The mean first passage times ma,b, a, b ∈ A, can be computed by solving the following

well-known system of linear equations:

ma,b = 1 +
∑

c∈A\{b}
p(a, c)mc,b. (2)

(ii) In applications, only words with positive probability of realisation are of interest. So words
which are not elements of W can be neglected.

For the special case of model M0, we obtain the following corollary.

Corollary 1. Let (Xn)n∈N be a sequence of i.i.d. random variables with values in a finite
alphabet A. Then N(w) − E N(w) satisfies an MDP with rate function �∗

0(q) = q2/2σ 2
0 (w),

where
σ 2

0 (w) = µ0(w) + 2
∑

q∈P (w)

µ0(ww(q)) − (2� − 1)µ2
0(w)

and µ0(w) = P(X1 = w1) · · · P(X� = w�).

The result can be easily extended to model Mm.

Theorem 2. If (Xn)n∈N is an irreducible, aperiodic, and homogeneous Markov chain of order
m with transition matrix � = (p(a1 · · · am, b))a1,...,am,b∈A, stationary distribution µ, and
finite state space A, then, for all w ∈ W = {a1 · · · a� ∈ A� : p(aj−m · · · aj−1, aj ) > 0 for all
j ∈ {m + 1, . . . , �}} and any initial distribution, N(w) − Eµ N(w) satisfies an MDP with rate
function �∗

m(q) = q2/2σ 2
m(w), where

σ 2
m(w) = µm(w) + 2

∑
q∈P (w)

µm(ww(q)) − (2� − 1)µ2
m(w)

+ 2

µ(w1 · · · wm)
µ2

m(w)

∞∑
k=1

(p(k)(w�−m+1 · · · w�, w1 · · · wm) − µ(w1 · · · wm)),

µm(w) = µ(w1 · · · wm)p(w1 · · · wm, wm+1) · · · p(w�−m · · · w�−1, w�),

and

p(k)(w�−m+1 · · · w�, w1 · · · wm)

= P(Xm+k = w�−m+1, . . . , X2m+k−1 = w� | X1 = w1, . . . , Xm = wm)

denotes the k-step transition probability from w1 · · · wm to w�−m+1 · · · w�.
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In model Mm-3 we consider a Markov chain of order m with finite state space A, with three
different strictly positive transition matrices

�k = (pk(a1 · · · am, am+1))a1,...,am+1∈A, k ∈ {1, 2, 3},
where

pk(a1 · · · am, am+1) = P(X3j+k = am+1 | X3j+k−m = a1, . . . , X3j+k−1 = am),

and with stationary distribution µ defined on Am × {1, 2, 3}. From the interpretation of the
model, it follows that we are interested in the number of occurrences of w starting at position
k within the codon, i.e. in the word count

N(w, k) :=
n−�+1∑

i=1

Yi(w) 1{i mod 3=k}, k ∈ {1, 2, 3}.

Additionally, we assume that n and � are both multiples of 3 and that the first letter of the
sequence X1 · · · Xn is the beginning of a codon. Under these conditions, it can be shown that
N(w, k)−Eµ N(w, k) satisfies an MDP with rate function �∗

m(q) = q2/2σ 2
m(w, k). To shorten

the analysis, we only state the result for k = 1, but analogous results are valid for k = 2 and
k = 3.

Theorem 3. In model Mm-3 and under the preceding conditions, N(w, 1) − Eµ N(w, 1)

satisfies an MDP with rate function �∗
m(q) = q2/2σ 2

m(w, 1), where

σ 2
m(w, 1) = 1

3
µm(w, 1) + 2

3

∑
p mod 3=3
p∈P (w)

µm(ww(p), 1) − 2� − 3

9
µ2

m(w, 1)

+ 2

3

µ2
m(w, 1)

µ(w1 . . . wm, 1)

∞∑
j mod 3=1

j=1

(p
(j)
1 (w�−m+1 · · · w�, w1 · · · wm)

− µ(w1 · · · wm, 1)),

p
(j)
1 (w�−m+1 · · · w�, w1 · · · wm)

= P(X3i+j = w1, . . . , X3i+j+m−1 = wm | X3i+1−m = w�−m+1, . . . , X3i = w�),

and

µm(w, 1) = µ(w1 · · · wm, 1)p2(w1 · · · wm, wm+1) · · · p3(w�−m · · · w�−1, w�).

If we want to consider motifs or patterns rather than precise words, i.e. a family {w1, . . . , wd}
of d words of equal length �, then the following result can be shown in analogy to Theorem 1.

Theorem 4. Under the conditions of Theorem 1 and for any initial distribution, the vector
(N(w1) − Eµ N(w1), . . . , N(wd) − Eµ N(wd)), wi ∈ W for all i ∈ {1, . . . , d}, satisfies an
MDP with rate function �∗

1(q) = 1
2 〈q, 	−1

1 (w)q〉, where

	1(w) = (	1(w
i, wj ))i,j∈{1,...,d},
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	1(w
i, wj ) = µ1(w

i) 1{i=j} +
∑

q∈P (wi ,wj )

µ1(w
iw

j

(q)) +
∑

q∈P (wj ,wi)

µ1(w
jwi

(q))

+ µ1(w
i)µ1(w

j )

µ(w
j
1)

∞∑
k=1

(p(k)(wi
�, w

j
1) − µ(w

j
1))

+ µ1(w
i)µ1(w

j )

µ(wi
1)

∞∑
k=1

(p(k)(w
j
� , wi

1) − µ(wi
1))

− (2� − 1)µ1(w
i)µ1(w

j ),

and P (wi, wj ) = {p ∈ {1, . . . , � − 1} : w
j
k = wi

k+p for all k = 1, . . . , � − p} denotes the set
of overlaps between wi and wj .

Remarks 3. (i) In analogy to Remarks 2(i), 	1(w
i, wj ) can be converted to

	1(w
i, wj ) = µ1(w

i) 1{i=j} +
∑

q∈P (wi ,wj )

µ1(w
iw

j

(q)) +
∑

q∈P (wj ,wi)

µ1(w
jwi

(q))

+ µ1(w
i)µ1(w

j )

(∑
a∈A

µ(a)(m
a,w

j
1

+ ma,wi
1
) − m

wi
�,w

j
1

− m
w

j
� ,wi

1

)

− (2� − 1)µ1(w
i)µ1(w

j ), (3)

where the mean first passage times ma,b, a, b ∈ A, are defined in Remarks 2(i) and can be
computed by solving the system of linear equations given in (2).

(ii) The result can also be extended to the models Mm and Mm-3.

For the special case of model M0 we obtain the following corollary.

Corollary 2. Let (Xn)n∈N be a sequence of i.i.d. random variables with values in a finite
alphabet A. Then the vector (N(w1) − E N(w1), . . . , N(wd) − E N(wd)) satisfies an MDP
with rate function �∗

0(q) = 1
2 〈q, 	−1

0 (w)q〉, where 	0(w) = (	0(w
i, wj ))i,j∈{1,...,d},

	0(w
i, wj ) = µ0(w

i) 1{i=j} +
∑

q∈P (wi ,wj )

µ0(w
iw

j

(q)) +
∑

q∈P (wj ,wi)

µ0(w
jwi

(q))

− (2� − 1)µ0(w
i)µ0(w

j ),

and P (wi, wj ) is given in Theorem 4.

In the following section we will focus on the proof of Theorem 1.

3. Proof of the main result

3.1. Letter occurrences

Before being able to prove Theorem 1, we address the special case of an MDP for counts
of single-letter occurrences, i.e. an MDP for Ñ(w) = ∑n

i=1 1{Xi=w}, where w ∈ A is a single
letter.

The advantage of this special case is that, in contrast to the general case of counting words
of arbitrary length �, there is no extra (� − 1)-dependence of word occurrences added to the
dependency structure of the Markov chain.
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Proposition 1. Given an irreducible, aperiodic, and homogeneous Markov chain (Xn)n∈N with
finite state space A, transition matrix � = (p(α, β))α,β∈A, and stationary distribution µ, let

Ñ(w) :=
n∑

i=1

Ỹi (w), where Ỹi (w) := 1{Xi=w}

for all w ∈ A. Then, for any initial distribution, Ñ(w) − Eµ Ñ(w) satisfies an MDP with rate
function �̃∗(q) = q2/2σ̃ 2(w), where

σ̃ 2(w) = lim
n→∞

1

n
Eµ(Ñ(w) − Eµ Ñ(w))2,

and this limit exists.

A result more general than Proposition 1 has been shown by Djellout and Guillin [6], but
instead of verifying the conditions stated in their theorem we want to establish a new proof
similar to theirs but specific to our situation.

The proof relies on the so-called regeneration method developed by Chung [4, p. 94]. The
idea of this method is to decompose the Markov chain into i.i.d. random blocks between visits
to a fixed state.

As the underlying Markov chain is finite and irreducible, all states are positive recurrent.
Thus, the regeneration method is applicable.

Proof of Proposition 1. Fix an arbitrary a ∈ A. For all j, k, n ∈ N, define

τ := τ(1) := inf{n ∈ N : Xn = a},
τ (k + 1) := inf{n > τ(k) : Xn = a},

Z̃j (w) := Ỹj (w) − Eµ Ỹj (w),

ξ̃k(w) :=
τ(k+1)∑

j=τ(k)+1

Z̃j (w),

�(n) := τ(Ñ(a) ∨ 1),

e(n) := �nµ(a)�.
Note that both (τ (k + 1) − τ(k))k∈N and (ξ̃k(w))k∈N are sequences of i.i.d. random variables
with common laws LPa (τ ) and LPa (

∑τ
k=1 Z̃k(w)), respectively (see [12, Theorem 17.3.1]).

The decomposition according to the regeneration method (see [4, p. 94]) is the following:

Ñ(w) − Eµ Ñ(w)

=
n∑

k=1

Z̃k(w)

=
τ∧n∑
k=1

Z̃k(w) +
Ñ(a)−1∑

k=1

ξ̃k(w) +
n∑

k=�(n)+1

Z̃k(w)

=
e(n)∑
k=1

ξ̃k(w) +
τ∧n∑
k=1

Z̃k(w) +
n∑

k=l(n)+1

Z̃k(w) +
(Ñ(a)−1∑

k=1

ξ̃k(w) −
e(n)∑
k=1

ξ̃k(w)

)
.
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We proceed by analysing each of these four summands and by showing that only the first
summand contributes to the moderate deviation behaviour. More precisely, we will prove the
following assertions:

(i)
∑e(n)

k=1 ξ̃k(w) satisfies an MDP with rate function �̃∗(q) = q2/2σ̃ 2(w), where

σ̃ 2(w) = µ(a) Ea

( τ∑
k=1

Z̃k(w)

)2

;

(ii) lim sup
n→∞

1

n2α−1 log P

(∣∣∣∣
τ∧n∑
k=1

Z̃k(w)

∣∣∣∣ > εnα

)
= −∞;

(iii) lim sup
n→∞

1

n2α−1 log P

(∣∣∣∣
n∑

k=�(n)+1

Z̃k(w)

∣∣∣∣ > εnα

)
= −∞;

(iv) lim sup
n→∞

1

n2α−1 log P

(∣∣∣∣
Ñ(a)−1∑

k=1

ξ̃k(w) −
e(n)∑
k=1

ξ̃k(w)

∣∣∣∣ > εnα

)
= −∞;

for any initial distribution and all ε > 0. These assertions imply exponential equivalence
of (Ñ(w) − Eµ Ñ(w))n∈N and (

∑e(n)
k=1 ξ̃k(w))n∈N. Thus, Proposition 1 follows from [5,

Theorem 4.2.13], and the fact that

σ̃ 2(w) = µ(a) Ea

( τ∑
k=1

Z̃k(w)

)2

= lim
n→∞

1

n
Eµ

(
Ñ(w) − Eµ Ñ(w)

)2

. (4)

The last equation is valid as Ea(
∑τ

k=1|Z̃k(w)|)2 ≤ Ea τ 2 and since (Xn)n∈N is a finite,
irreducible, and aperiodic Markov chain. Namely, this yields the existence of N ∈ N with
�N � 0. Let ρ := minα,β �N(α, β) > 0. Then we have

Pa(τ > kN) ≤ (1 − ρ)k. (5)

Hence, Ea τ 2 < ∞ and (4) follows from [3, pp. 45ff.].
Proof of assertion (i). As mentioned above, (ξ̃k(w))k∈N is a sequence of i.i.d. random

variables with common law LPa (
∑τ

k=1 Z̃k(w)). Furthermore, log Ea eλξ̃1(w) ≤ Ea eλτ < ∞
(compare (5)) in some neighbourhood around 0. Thus, a classical MDP for sums of i.i.d.
random variables (see, e.g. [5, Theorem 3.7.1]) is applicable, if we substitute e(n) for n. As
e(n)/n = �nµ(a)�/n → µ(a), we find that

∑e(n)
k=1 ξ̃k(w) satisfies an MDP with rate function

�̃∗(q) = q2/2σ̃ 2(w), where σ̃ 2(w) = µ(a) Ea(
∑τ

k=1 Z̃k(w))2.
Proof of assertion (ii). We have | ∑τ∧n

k=1 Z̃k(w)| ≤ τ . Since (Xn)n∈N is a homogeneous,
irreducible, aperiodic Markov chain with finite state space, we obtain (similarly to (5))

P

(∣∣∣∣
τ∧n∑
k=1

Z̃k(w)

∣∣∣∣ > εnα

)
≤ P(τ > εnα) ≤ (1 − ρ)εn

α/N ,

where ρ = minα,β �N(α, β) > 0. Assertion (ii) follows as an immediate consequence.
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Proof of assertion (iii). We have

∣∣∣∣
n∑

k=�(n)+1

Z̃k(w)

∣∣∣∣ ≤
n∑

k=�(n)+1

|Z̃k(w)|

≤
τ(Ñ(a)+1)∑

k=τ(Ñ(a))+1

|Z̃k(w)|

≤ max
1≤k≤n

τ(k+1)∑
k=τ(k)+1

|Z̃k(w)|

≤ max
1≤k≤n

(τ (k + 1) − τ(k)).

As (τ (k + 1)− τ(k))k∈N is a sequence of i.i.d. random variables with common law LPa (τ ), we
obtain

P

(∣∣∣∣
n∑

k=�(n)+1

Z̃k(w)

∣∣∣∣ > εnα

)
≤ P

(
max

1≤k≤n
(τ (k + 1) − τ(k)) > εnα

)

≤
n∑

k=1

P(τ (k + 1) − τ(k) > εnα)

= n Pa(τ > εnα).

Since log n/n2α−1 → 0 if n → ∞, assertion (iii) follows analogously to (ii).
Proof of assertion (iv). Let δ ∈ (0, µ(a)) be fixed but arbitrary. Choose n large enough such

that e(n) ≥ δn. Conditioned on |Ñ(a) − 1 − e(n)| ≤ δn we have

∣∣∣∣
Ñ(a)−1∑

k=1

ξ̃k(w) −
e(n)∑
k=1

ξ̃k(w)

∣∣∣∣ ≤ 2 max
e(n)−�δn�≤j≤e(n)+�δn�

∣∣∣∣
j∑

k=e(n)−�δn�
ξ̃k(w)

∣∣∣∣,
and, thus,

P

(∣∣∣∣
Ñ(a)−1∑

k=1

ξ̃k(w) −
e(n)∑
k=1

ξ̃k(w)

∣∣∣∣ > εnα

)

≤ P

(
max

1≤j≤2�δn�

∣∣∣∣
j∑

k=1

ξ̃k(w)

∣∣∣∣ >
ε

2
nα

)
+ P(Ñ(a) − 1 − e(n) > δn)

+ P(Ñ(a) − 1 − e(n) < −δn)

=: I + II + III.

Let us consider I first. Applying Ottaviani’s inequality (see [11, Lemma 6.2]) for the indepen-
dent random variables (ξ̃k(w))k∈N, we obtain

P

(
max

1≤j≤2�δn�

∣∣∣∣
j∑

k=1

ξ̃k(w)

∣∣∣∣ >
ε

2
nα

)
≤ P

(∣∣ ∑2�δn�
k=1 ξ̃k(w)

∣∣ > εnα/4
)

1 − max1≤j≤2�δn� P
(∣∣ ∑2�δn�

k=j+1 ξ̃k(w)
∣∣ > εnα/4

) .
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From the central limit theorem, it follows that (1/nα)
∑n

k=1 ξ̃k(w) → 0 in probability. Thus,
for sufficiently large n, we obtain

max
1≤j≤2�δn� P

(∣∣∣∣
2�δn�∑

k=j+1

ξ̃k(w)

∣∣∣∣ >
ε

4
nα

)
≤ 1

2
,

and, hence,

P

(
max

1≤j≤2�δn�

∣∣∣∣
j∑

k=1

ξ̃k(w)

∣∣∣∣ >
ε

2
nα

)
≤ 2 P

(∣∣∣∣
2�δn�∑
k=1

ξ̃k(w)

∣∣∣∣ >
ε

4
nα

)
. (6)

Similarly to the proof of assertion (i) with 2�δn� instead of e(n) = �nµ(a)�, we can show that∑2�δn�
k=1 ξ̃k(w) satisfies an MDP with rate function

�̃∗
δ (q) = q2

2(2δ) Ea ξ̃2
1 (w)

.

Choosing F = {x : |x| ≥ ε/4} as an open set and letting δ → 0, we obtain

lim
δ→0

lim sup
n→∞

1

n2α−1 log P

(∣∣∣∣
2�δn�∑
k=1

ξ̃k(w)

∣∣∣∣ ≥ ε

4
nα

)
= −∞,

and, consequently (see (6)),

lim
δ→0

lim sup
n→∞

1

n2α−1 log P

(
max

1≤j≤2�δn�

∣∣∣∣
j∑

k=1

ξ̃k(w)

∣∣∣∣ >
ε

2
nα

)
= −∞.

Let us consider II. We have

P(Ñ(a) − 1 − e(n) > δn) ≤ P(τ (e(n) + �δn�) ≤ n)

≤ P

(e(n)+�δn�∑
k=1

(τ (k + 1) − τ(k)) ≤ n

)

= P

(
1

e(n) + �δn�
e(n)+�δn�∑

k=1

(τ (k + 1) − τ(k)) ≤ n

e(n) + �δn�
)

.

As (τ (k+1)−τ(k))k∈N is a sequence of i.i.d. random variables with expectation Ea τ = 1/µ(a)

and as, for sufficiently large n,

n

e(n) + �δn� = n

�nµ(a)� + �δn� <
1

µ(a)
= Ea τ,

the LDP of Cramér (see [5, Theorem 2.2.3]) is applicable. Since the rate function I (q) =
supt∈R(tq − log Ea etτ ) governing the large deviations satisfies I (x) ≥ 0 and I (x) = 0 if and
only if x = Ea τ , for sufficiently large n, there exists c > 0 with

P

(
1

e(n) + �δn�
e(n)+�δn�∑

k=1

(τ (k + 1) − τ(k)) ≤ n

e(n) + �δn�
)

≤ e−nc.
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Hence,

lim
n→∞

1

n2α−1 log P(Ñ(a) − 1 − e(n) > δn) = −∞.

We approximate III analogously. Namely, we find that

lim
n→∞

1

n2α−1 log P(Ñ(a) − 1 − e(n) < −δn) = −∞.

Combining the approximations for I, II, and III, which all hold uniformly in δ, assertion (iv)
finally follows. This completes the proof of Proposition 1.

3.2. Word occurrences

In order to generalise the MDP for single-letter counts (see Proposition 1) to an MDP
for counts of words of arbitrary length � (see Theorem 1), we consider the Markov chain
(Xn)n∈N, Xn = Xn · · · Xn+�−1, with state space A� and with appropriate transition probabili-
ties (see below). In A� a word w = w1 · · · w� corresponds to a single letter. If we restrict the
state space to the set

W = {a1 · · · a� ∈ A� : p(ai, ai+1) > 0 for all i ∈ {1, . . . , � − 1}}
then we can show that (Xn)n∈N is an irreducible, aperiodic, and homogeneous Markov chain.
This enables us to apply Proposition 1.

Proof of Theorem 1. Consider the Markov chain (Xn)n∈N, Xn = Xn · · · Xn+�−1, with state
space A� and with transition matrix �̃ := (p̃(a, b))a,b∈A� , where

p̃(a1 · · · a�, b1 · · · b�) :=
{

p(a�, b�) if aj+1 = bj , j = 1, . . . , � − 1,

0 otherwise,

for all a1, . . . , a�, b1, . . . , b� ∈ A.
Given the entire state space A�, �̃ is not necessarily irreducible and aperiodic since, for any

M ∈ N, the M-step transition probability p̃(M)(a1 · · · a�, b1 · · · b�) cannot be positive if one
of the probabilities p(bi, bi+1) is equal to 0. Thus, we restrict the state space to the set W .
As (Xn)n∈N is irreducible and aperodic, there exists N ∈ N with �n � 0 for all n ≥ N . Let
n ≥ N and a1 · · · a�, b1 · · · b� ∈ W . Then, by definition of the transition matrix �̃ we have

p̃(n+�−1)(a1 · · · a�, b1 · · · b�) = p(n)(a�, b1)p(b1, b2)p(b2, b3) · · · p(b�−1, b�) > 0.

Thus, there exists an M ∈ N satisfying �̃n
res � 0 for all n ≥ M , where �̃res denotes the

restriction of �̃ to W . Hence, (Xn)n∈N with state space W is an irreducible, aperiodic, and
homogeneous Markov chain.

Consequently, we can apply Proposition 1. As

{Xi = w1, . . . , Xi+�−1 = w�} = {Xi = w}
for all w1 · · · w� ∈ W and, thus, Ỹi (w) and Ñ(w) (as functions of X1, X2, . . . , Xn) correspond
to the random variables Yi(w) and N(w), for any initial distribution and all w ∈ W , the centred
word count N(w)−Eµ N(w) satisfies an MDP with rate function �∗

1(q) = q2/2σ 2
1 (w), where

σ 2
1 (w) = lim

n→∞
Eµ(N(w) − Eµ N(w))2

n
= lim

n→∞
varµ N(w)

n
.
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Kleffe and Borodovsky [9] computed the second moment of N(w). A nice representation of
varµ N(w) is given in [19, Equation (6.4.1)]:

varµ N(w) = Eµ N(w) + 2
∑

q∈P (w)

Eµ N(ww(q)) − (Eµ N(w))2

+ 2

µ(w1)
µ2

1(w)

n−2�+1∑
k=1

(n − 2� + 2 − k)p(k)(w�, w1).

Since Eµ N(w) = (n − l + 1)µ1(w), this yields

σ 2
1 (w) = µ1(w) + 2

∑
q∈P (w)

µ1(ww(q))

+ lim
n→∞

(
2

µ(w1)
µ2

1(w)
1

n

n−2�+1∑
k=1

(n − 2� + 2 − k)p(k)(w�, w1)

− (n − � + 1)2

n
µ2

1(w)

)
. (7)

It can be easily computed that

(n − � + 1)2 = 2
n−2�+1∑

k=1

(n − 2� + 2 − k) + n(2� − 1) − 3�2 + 4� − 1.

Thus, we obtain

lim
n→∞

(
2

µ(w1)
µ2

1(w)
1

n

n−2�+1∑
k=1

(n − 2� + 2 − k)p(k)(w�, w1) − (n − � + 1)2

n
µ2

1(w)

)

= lim
n→∞

(
2

µ(w1)
µ2

1(w)

n−2�+1∑
k=1

n − 2� + 2 − k

n
(p(k)(w�, w1) − µ(w1))

)

− (2� − 1)µ2
1(w)

= 2

µ(w1)
µ2

1(w)

∞∑
k=1

(p(k)(w�, w1) − µ(w1)) − (2� − 1)µ2
1(w), (8)

where the last equation follows from Kronecker’s lemma. Combining (7) and (8) completes
the proof of Theorem 1.

Theorem 2 can be obtained analogously, applying Proposition 1 to the first-order Markov
chain (Xn)n∈N, Xn = Xn . . . Xn+�−1, with state space A� and with transition matrix �̃ :=
(p̃(a, b))a,b∈A� , where this time

p̃(a1 · · · a�, b1 · · · b�) :=
{

p(a�−m+1 · · · a�, b�) if aj+1 = bj , j = 1, . . . , � − 1,

0 otherwise.

The proof of Theorem 3 is lengthy. However, the only new idea behind it aside from the
methods used in the proof of Theorem 1 is to group the sequence (Xn)n∈N into blocks of
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length 3, i.e. Y1 := X1X2X3, Y2 := X4X5X6, etc., in order to create a homogeneous Markov
chain (Yi)i∈N. Thus, the proof is omitted. A similar approach can also be found in [22,
Chapter 3].

The MDP for the number of occurrences of multiple patterns (see Theorem 4), i.e. the
generalisation from dimension 1 (compare Theorem 1) to arbitrary dimension d ∈ N, can be
obtained easily as well.

For more details concerning the proofs of Theorems 2, 3, and 4, see [1].

4. Applications to biological sequence analysis

As mentioned in the introduction, given a probabilistic model and a biological sequence, we
are interested in identifying exceptional words (or patterns), i.e. words occurring significantly
often or rarely.

Let Nobs(w) denote the observed count of a word w of length � in the given biological
sequence. Applying Theorem 1, we obtain the following moderate deviation based approxima-
tions for the P-values P(N(w) ≥ Nobs(w)) and P(N(w) ≤ Nobs(w)), where f (n) � g(n) as
n → ∞ is short for limn→∞(1/n2α−1)(log(f (n))− log(g(n))) = 0 (logarithmic equivalence).

Corollary 3. For large n, under the conditions of Theorem 1, we have the following: if
Nobs(w) ≥ (n − � + 1)µ1(w) then

P(N(w) ≥ Nobs(w)) � exp

(
− 1

2σ 2
1 (w)

1

n
(Nobs(w) − (n − � + 1)µ1(w))2

)

and if Nobs(w) ≤ (n − � + 1)µ1(w) then

P(N(w) ≤ Nobs(w)) � exp

(
− 1

2σ 2
1 (w)

1

n
(Nobs(w) − (n − � + 1)µ1(w))2

)
,

where σ 2
1 (w) and µ1(w) are defined in Theorem 1.

Proof. Choosing F = [q, ∞) and O = (q, ∞), q ≥ 0, in Definition 1 and applying
Theorem 1, we obtain

P

(
N(w) − Eµ N(w)

nα
≥ q

)
� exp

(
−n2α−1 q2

2σ 2
1 (w)

)
.

As Eµ N(w) = (n − � + 1)µ1(w), setting q := (1/nα)(Nobs(w) − (n − � + 1)µ1(w)), which
is positive if Nobs(w) ≥ (n − � + 1)µ1(w), we obtain the first part of the corollary:

P(N(w) ≥ Nobs(w)) = P

(
N(w) − Eµ N(w)

nα
≥ q

)

= exp

(
− 1

2σ 2
1 (w)

1

n
(Nobs(w) − (n − � + 1)µ1(w))2

)
.

The second part follows analogously by choosing F ′ = (−∞, q] and O ′ = (−∞, q), q ≤ 0
(q = (1/nα)(Nobs(w) − (n − � + 1)µ1(w)) ≤ 0 if Nobs(w) ≤ (n − � + 1)µ1(w)).

Remark 4. Analogous moderate deviation based approximations for the P-values are also valid
in models Mm and Mm-3 (compare Theorems 2 and 3).
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Table 1: Homo sapiens α-globin gene cluster (HBB), mRNA, base range 1–600 (sequence extracted
from the National Center for Biotechnology Information; accession number NM_000006).

1 GATCACGCCATTGCACTCCACCCTGGGCGACAGAGCGACGAGACCCCGTATCAAAAAAAA
61 AAAAAAGAAAGAAAGAAAGAAAAAAGAAAAAAAAAAGGCCGGGCGCGGTGGCTCACGCCT
121 GTAATCCCAGCACTTTGGGAGGCCGAGGCGGGTGAATCACGAGGTCAGGAGTTCGAGACC
181 ATCCTGGCCAACATGGTGAAACCCCGTCTCTACAAAAAAAAAAAAAAAAATTAGCCGGGC
241 GTGGTGGCGGGCGCCTGTAATCCCAGCTACTCGGGAGGCTGAGACAGGAAAATCGCTTGA
301 ACCCGGGAGGCGGAGCTTGCGGTGAGCCGAGATTGCGCCACTGCACTACAGCCTAGGCGA
361 CAGAGCGAGACTCCGTCTCAAAAAAAAAAAAAAAAAAAAAAAACACTTGGAAGCCGACAG
421 GAGATCTTTGAGACCTTGGGCGAGGCAGTGACACTAAAGGCAGGAGCGACTACAGAAGAA
481 TAAATTAAACTTCATCAGATTAAAAACTTTACTGCGGCCGGGCGCGGTGGCTCACGCCTG
541 AAATCCCAGCACTTTGGGAGGCCGAGGTGGGCAGATCATGAGATCAGGAGATCTAGACCA
601 · · ·

To illustrate the possibility of applying these approximations, we consider the following
example.

Example 1. (Exceptional words in the human α-globin gene cluster.) The protein hemoglobin
is responsible for the oxygen transport in human red blood cells and consists of four subunits:
two α-globin subunits and two β-globin subunits. When considering the DNA sequence
(mRNA) of the human α-globin gene cluster (located on chromosome 16), which is 43 058
bases long, we recognise that the word ‘CAGG’ appears 435 times (the first 600 bases of the
α-globin gene cluster can be seen in Table 1). Is this significantly frequent?

To answer this question, we have to determine the model parameters. We have n = 43 058,
w = CAGG, Nobs(w) = 435, and P (w) = ∅. An estimator (MLE) for the transition
probabilities p(a, b), a, b ∈ A = {A,C,G,T}, is given by

p̂(a, b) = Nobs(ab)∑
c∈A Nobs(ac)

(see [19, Section 6.1.2]). Applying this, we obtain the following estimation for the transition
matrix �:

� =

⎛
⎜⎜⎝

0.29 0.22 0.32 0.17
0.28 0.33 0.13 0.26
0.22 0.26 0.35 0.17
0.16 0.26 0.35 0.23

⎞
⎟⎟⎠

(in the following we will always state rounded values but continue our calculations with the
nonrounded values).

In addition, we need to compute the stationary distribution µ and (referring to (1)) the first
passage times ma,b, a, b ∈ A. The first passage times ma,b, a, b ∈ A, can be computed by
solving the linear equations

ma,b = 1 +
∑

c∈A\{b}
p(a, c)mc,b,
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yielding

M = (ma,b)a,b∈A =

⎛
⎜⎜⎝

4.19 4.11 3.60 5.17
4.25 3.70 4.33 4.65
4.46 3.96 3.52 5.18
4.79 3.94 3.51 4.83

⎞
⎟⎟⎠ .

Since µ(a) = 1/ma,a for all a ∈ A, we also obtain

µ(A) = 0.24, µ(C) = 0.27, µ(G) = 0.28, µ(T ) = 0.21.

Now we can compute the parameters µ1(CAGG) and σ 2
1 (CAGG) (see (1)):

µ1(CAGG) = µ(C)p(C,A)p(A, G)p(G, G) = 0.008 31,

σ 2
1 (CAGG) = µ1(CAGG) − 7µ2

1(CAGG) + 2µ2
1(CAGG)

(∑
a∈A

µ(a)ma,C − mG,C

)

= 0.007 82.

As Nobs(w) = 435 ≥ 357.73 = (n − l + 1)µ1(w), applying Corollary 3 yields

P(N(CAGG) ≥ 435)

� exp

(
− 1

2σ 2
1 (CAGG)

1

43 058
(435 − 43 055µ1(CAGG))2

)
= 0.000 14.

Setting a significance level of 0.02%, we can conclude that, given model M1, the word ‘CAGG’
occurs significantly often.

In order to compare this moderate deviation approximation based P-value with the
exact as well as the Gaussian and large deviation approximation based P-values, we use the
programme SPatt (statistic for patterns) which has been developed by Nuel [14] (see also
http://stat.genopole.cnrs.fr/spatt/). The programme outputs the following P-values for the word
‘CAGG’ to occur 435 times or more in a sequence of length 43 058, assuming a Markov chain
of order 1 with its parameters estimated from the input sequence, i.e. the sequence of the human
α-globin gene cluster:

exact P-value (X-SPatt): 1e-4.61 ≈ 0.000 1;
Gaussian approximation based P-value (G-SPatt): 1e-6.29 ≈ 0.000 001;
large deviation approximation based P-value (LD-SPatt): 1e-3.61 ≈ 0.001.

Thus, we can conclude that our P-value of 0.000 14 approximates the exact P-value very well
and that it performs much better than the Gaussian and large deviation based approximations
(with regard to this example).

For occurrences of patterns {w1, . . . , wd} (see Theorem 4), moderate deviation based
approximations can be derived similarly to Corollary 3 by choosing F = {x ∈ R

d :∑d
i=1 xi ≥ q}

and O = {x ∈ R
d : ∑d

i=1 xi > q} (or F ′ = {x ∈ R
d : ∑d

i=1 xi ≤ q} and O ′ = {x ∈ R
d :∑d

i=1 xi < q}; see the proof of Corollary 3).

Corollary 4. For large n, under the conditions of Theorem 1 and for all 1
2 < α < 1, we have

P

( d∑
i=1

N(wi) ≥
d∑

i=1

Nobs(wi)

)
� exp

(
−1

2
n2α−1 inf∑d

i=1 xi≥q

〈x, 	−1
1 (w)x〉

)
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and

P

( d∑
i=1

N(wi) ≤
d∑

i=1

Nobs(wi)

)
� exp

(
−1

2
n2α−1 inf∑d

i=1 xi≤q

〈x, 	−1
1 (w)x〉

)
,

where

q = 1

nα

( d∑
i=1

(Nobs(wi) − (n − l + 1)µ1(w
i))

)

and 	1(w) is given in Theorem 4.

Again, we want to illustrate the possibility of applying this approximation in model M1.

Example 2. (Exceptional motifs in the human α-globin gene cluster.) When considering the
DNA sequence of the human α-globin gene cluster a second time, we discover that the word
‘CCTG’ occurs 487 times (see, among others, the doubly underlined regions in the first 600
bases in Table 1). Thus, for {w1, w2} = {CAGG, CCTG}, we have

∑2
i=1 Nobs(wi) = 922. In

order to establish whether this count is significantly high, we have to determine the rate function
�∗

1(q) = 1
2 〈q, 	−1

1 (w)q〉 (see Corollary 4).
We have P (w1, w2) = P (w2, w1) = ∅. Using the estimators for p(a, b) and the computed

mean first passage times ma,b, a, b ∈ A, from Example 1, we obtain, in analogy to Example 1,

µ1(w
1) = 0.008 31, µ1(w

2) = 0.008 11,

	1(w
1, w1) = σ 2

1 (CAGG) = 0.007 82, 	1(w
2, w2) = σ 2

1 (CCTG) = 0.007 65,

and, referring to (3),

	1(w
1, w2) = 	1(w

2, w1)

= 2µ1(CAGG)µ1(CCTG)

(∑
a∈A

µ(a)ma,C − mG,C

)
− 7µ1(CAGG)µ1(CCTG)

= −0.000 48.

Hence,

	1(w) =
(

0.007 82 −0.000 48
−0.000 48 0.007 65

)
, 	−1

1 (w) =
(

128.36 8.00
8.00 131.25

)
,

and, thus, we obtain

〈x, 	−1
1 (w)x〉 = 128.36x2

1 + 16.00x1x2 + 131.25x2
2 .

In order to apply Corollary 4, we have to compute infx1+x2≥q〈x, 	−1
1 (w)x〉, where

q = 1

nα
(922 − 43 055(µ1(CAGG) + µ1(CCTG))) = 1

nα
214.93 > 0.

Consequently, we obtain

inf
x1+x2≥q

〈x, 	−1
1 (w)x〉 ≈ q268.90 = 1

n2α
3 182 727.
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Thus, applying Corollary 4 we obtain the following approximation:

P

( 2∑
i=1

N(wi) ≥ 922

)
� exp

(
−1

2
n2α−1 inf∑2

i=1 xi≥q

〈x, 	−1
1 (w)x〉

)

≈ exp

(
−1

2

1

n
3 182 727

)
= 8.89 × 10−17.

Hence, the probability of motif {CAGG, CCTG} occurring 922 times or more is vanishingly
small and also notably lower than the probability of the single word ‘CAGG’ occurring 435
times or more (see Example 1).

Acknowledgement

We would like to thank the anonymous referee for many useful comments.

References

[1] Behrens, S. (2008). Moderate und große abweichungen zur statistischen analyse biologischer sequenzen.
Doctoral Thesis, Universität Münster.

[2] Blaisdell, B. E. (1985). Markov chain analysis finds a significant influence of neighboring bases on the
occurrence of a base in eucaryotic nuclear DNA sequences both protein-coding and noncoding. J. Molec. Evol.
21, 278–288.

[3] Chen, X. (1999). Limit theorems for functionals of ergodic Markov chains with general state space. Mem. Amer.
Math. Soc. 139.

[4] Chung, K. L. (1967). Markov Chains With Stationary Transition Probabilities, 2nd edn. Springer, New York.
[5] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd edn. Springer, New

York.
[6] Djellout, H. and Guillin, A. (2001). Moderate deviations for Markov chains with atom. Stoch. Process.

Appl. 95, 203–217.
[7] Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1998). Biological Sequence Analysis. Cambridge

University Press.
[8] Hunter, J. J. (2008). Variances of first passage times in a Markov chain with applications to mixing times.

Linear Algebra Appl. 429, 1135–1162.
[9] Kleffe J. and Borodovsky M. (1992). First and second moment of counts of words in random texts generated

by Markov chains. Comput. Appl. Biosci. 8, 433–441.
[10] Kleffe, J. and Langbecker, U. (1990). Exact computation of pattern probabilities in random sequences

generated by Markov chains. Comput. Appl. Biosci. 6, 347–353.
[11] Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer, Berlin.
[12] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.
[13] Nuel, G. (2001). Grandes déviations et chaînes de Markov pour l’étude des occurrences de mots dans les

séquences biologiques. Doctoral Thesis, Université d’Essonne.
[14] Nuel, G. (2006). Numerical solutions for patterns statistics on Markov chains. Statist. Appl. Genet. Molec. Biol.

5, 45 pp.
[15] Nussinov, R. (1981). The universal dinucleotide asymmetry rules in DNA and the amino acid codon choice.

J. Molec. Evol. 17, 237–244.
[16] Pitman, J. W. (1974). Uniform rates of convergence for Markov chain transition probabilities. Z. Wahrschein-

lichkeitsth. 29, 193–227.
[17] Prum, B., Rodolphe, F. and de Turckheim, È. (1995). Finding words with unexpected frequencies in

desoxyribonucleic acid sequences. J. R. Statist. Soc. B 57, 205–220.
[18] Régnier, M. (2000). A unified approach to word occurrence probabilities. Discrete Appl. Math. 104, 259–280.
[19] Reinert, G., Schbath, S. and Waterman, M. S. (2005). Probabilistic and statistical properties of finite words

in finite sequences. In Applied Combinatorics on Words, eds J. Berstel and D. Perrin, Cambridge University
Press.

[20] Robin, S. and Daudin, J. J. (1999). Exact distributions of word occurrences in a random sequence of letters.
J. Appl. Prob. 36, 179–193.

https://doi.org/10.1239/jap/1261670686 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1261670686


Moderate deviations for word counts 1037

[21] Schbath, S. (1995). Compound poisson approximation of word counts in DNA sequences. ESAIM Prob. Statist.
1, 1–16.

[22] Schbath, S. (1995). Étude asymptotique du nombre d’occurrences d’un mot dans une chaîne de Markov et
application à la recherche de mots de fréquence exceptionnelle dans les séquences d’ADN. Doctoral Thesis,
Université René Descartes, Paris V.

https://doi.org/10.1239/jap/1261670686 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1261670686

	1 Introduction
	1.1 Probabilistic models for biological sequences
	1.2 Moderate deviations

	2 Main result
	3 Proof of the main result
	3.1 Letter occurrences
	3.2 Word occurrences

	4 Applications to biological sequence analysis
	Acknowledgement
	References

