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1. Introduction. Consider the (vector, w-component) system of differential 
equations 

a) *'=/(*) e = d/dt), 
where f(x) is of class C1. Let Œ denote a set of points, x, consisting of unrestricted 
solution paths x(t), so that the x(t) exist and lie in & for — oo < / < oo. 
Let t = to be arbitrary but fixed; then the solution x = x{f) will be called 
stable (with respect to Ù) if for every e > 0, there exists a ô = 8€ > 0 such 
that \x(t) — y{£)\ < e whenever y{t) is in & and \x(t0) — y(k)\ < d. For a 
discussion of this type of stability (called 4-stability in (7)), see Liapounoff 
(4, pp. 210-211; 8, pp. 98-99), wherein are given references to Minding and 
Dirichlet. 

It was shown by Hartman and Wintner (3) that a solution x(t) of (1) which 
is dense on a compact set Q is almost periodic (in the sense of Bohr) if and 
only if it is stable in a certain sense. The type of stability considered there 
(called ^-stability in (7)), however, is more restrictive than the A -stability, 
and, in the sequel, the term "stability" will refer only to that (A-stability) 
defined at the beginning of this section. It was shown in (7) that if (1) is of 
the incompressible type, so that 

(2) d i v / ^ 2dfk/dxk = 0, 

and if the space fi is suitably restricted, then all stable solutions of (1) do have 
certain properties possessed by almost periodic solutions. Whether all such 
solutions, for n arbitrary, are actually almost periodic will remain undecided. 
(If (2) is not assumed, then stability surely does not imply almost periodicity 
even if the dimension number n of (1) is unity; see (7).) 

The present paper will be devoted to a consideration of (1), subject to the 
(measure-preserving) condition (2), in the special case when n = 2. It is known 
that the system (1) is then equivalent to a conservative Hamiltonian system 
(8, p. 88), and hence, in view of the existence of the energy integral, is com­
pletely integrable. In what follows then, only Hamiltonian systems of one 
degree of freedom, that is, systems of the type 

(3) p' = - dH/dq, q' = dH/dp (H = H(p, q), ' = d/dt), 

will be considered. The identification with ( l ) i sx i = p, x2 = q,fi = — dH/dq, 
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/ 2 = dH/dp) the assumption tha t / (x ) of (1) be of class C1 is now that the 
Hamiltonian H{p,q) be of class C2. The following theorem will be proved: 

I. Let H{p, q) be of class C2 on the p, q space, and let ft denote an unrestricted 
invariant set of finite positive measure. Then through every point x = {p, q) of 
ft, except possibly for those belonging to a set Z of measure 0, there exists either an 
equilibrium solution (x = const.) or a periodic solution of (3). 

It will turn out that the set Z is the set excluded from the assertion of the 
Poincaré recurrence theorem on ft (see §3 below). It was shown in (7), however, 
that, even for general systems (1) satisfying (2) with dimension number n 
arbitrary, if the set ft satisfies 
(4) m e a s f t 2 > 0 , 

where x is an arbitrary point of ft and 2 is any open sphere (disk, in the 
present case) with center at x, then no point of a stable path can belong to Z. 
As a consequence, there follows the theorem 

II. Under the same assumptions as in (I), along with the additional condition 
(4), every stable solution path x{t) = {pit), q{t)) is periodic {possibly constant) 
on — oo < / < co. 

Needless to say, the condition (4) is fulfilled if, for instance, the set ft is 
open or is the closure of an open set. 

It should be noted that the existence of a closed (Jordan) curve in the p, q 
space of the form H = const, does not necessarily imply that this is the path 
of a periodic solution of (3). One need only consider the physical example of a 
simple pendulum oscillating with an energy just sufficient to raise the pendulum 
(asymptotically) to its greatest possible height, corresponding to a position 
of unstable equilibrium. 

For a general discussion of systems (1) when n = 2, see the series of papers 
of Poincaré (5), especially the one of 1885. It should be noted that the notion 
of stability considered there (5, pp. 167-172) is not that of the present paper, 
but what is sometimes termed stability in the sense of Poisson. In this connec­
tion, compare the recurrence theorem of Poincaré (6, pp. 67 ff) cited at the 
beginning of §3 below. For further references to the case n = 2, see Birkhoff 
(1), in particular pp. 123-124, and Brown (2). 

Another corollary of I is 

III. Let H — H{p, q) be of class C2 and suppose that the point {po, <?o) is an 
isolated equilibrium point of the system (3). If {po, qo) is a stable point {that is, 
if the solution p •= p0l q = q0 is stable), then it is either a {local) maximum or a 
minimum point of the funtion H{p, q). 

The question as to whether there is a theorem corresponding to III for the 
case of a conservative dynamical system with n degrees of freedom was 
pointed out by Wintner (8, p. 101) and will remain undecided. It is known 
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that the conclusion of III can become false if the restriction that (p0, qo) 
be an isolated equilibrium point is dropped (8, pp. 100-101). 

The proof of III as a consequence of Theorem I will be given in §2; the proof 
of I will be given in §3. 

2. Proof of III . Grant Theorem I. Since Xo = (po, qo) is a stable equilibrium 
point, there exists a sequence of invariant (and, if desired, open) sets contain­
ing, and closing down upon, the point x0 (Poincaré-Birkhofï criterion). Choose 
one of these sets and call it 12; it is clear that the assumptions of I are now 
fulfilled. 

Since x0 is an isolated equilibrium point, it follows from I that through 
almost all points sufficiently close to x0 there exist (non-constant) periodic 
solution of (3), corresponding to closed Jordan curves in the p, q space. 
Consider a sequence of such curves Ci, C2, . . . , which, in view of the stability 
assumption on x0, tend to the point x0. Since the energy integrals H = const, 
of (2) are the equations of the solutions in the p, q plane, each of the curves 
Cn is a level curve of H. Hence the function H attains either a (local) maximum 
or a minimum value at at least one point, say xn, inside each (Jordan) curve 
Cn. Clearly the xn are equilibrium points and satisfy xn—->x0 as n—•> 00. Since 
Xo is an isolated equilibrium point, then xn — x0 for n sufficiently large (and 
hence for some one value of n). Consequently, x0 is either a maximum or a 
minimum point of H and the proof of III is complete. 

3. Proof of I. The assumptions on 12 are those guaranteeing the validity 
of the Poincaré recurrence theorem (cf., in this connection, 6, pp. 67 ff. ;8, 
p. 91; 7). Let Z denote the set of measure zero excluded from the assertion of 
this theorem, so that, if x0 is not in Z, the solution path x(i) through x0 has 
the following property: if t* is arbitrary, there exists a sequence of dates tn, 
where n = ± 1, ± 2 , . . . , such that tn —-> °° or — 00 according as n —> 00 or 
— 00 and x(tn) -*x(t*) as \n\ —• 00. It will be shown that if x0 = (po, qo) is 
in 12 — Z, then the (vector) function x(f), where Xo — x 

(£0), is periodic or 
constant (for — 00 < / < 00). 

Suppose, if possible, that x(t) ^ const, and not periodic. Since x0 = x(to) 
is in 12 — Z, there exist values tn and points xn = x (tn) such that xn ^ x0 and 
ocn —* #0 as n —•> 00. Since x{i) j£ const., so that x0 is not an equilibrium point, 
the general existence theorem along with the attending continuity properties 
for solutions of ordinary differential systems (1), guarantees the existence of 
points Xn on the curve x{t) which lie on the normal line to this curve at the 
point Xo, and satisfy Xn(^Xo) —> x0. Since the solution path curve x(t) con­
stitutes a branch of the locus H(p, q) = c, for some constant c, it is clear 
that the directional derivatives of iJ, taken along the tangent and the normal 
to the path x(t) at the point x0, are zero. Consequently, the vector grad H 
is zero at this point; and so x0 is an equilibrium point, in contradiction with 
the supposition at the beginning of this paragraph. This completes the proof 
of I. 
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