NOTE ON SCHIFFER’S VARIATION IN THE CLASS
OF UNIVALENT FUNCTIONS IN
THE UNIT DISC

KIKUJI MATSUMOTO

1. Let S denote the class of univalent functions f(z) in the unit disc
D: |z]<1 with the following expansion:

ey fR)=z24at+ a2+ -+ az"+- - ..

We denote by f£,(z) the extremal function in S which gives the maximum
value of the real part of @, and by D, the image of D under w= f,(2).
Schiffer proved in his papers [1] and [2] by using his variational method
that the boundary of D, consists of analytic slits w = w(¢), ¢ being a real
parameter, satisfying

dw \* 1 alP
@) (4F) w B e <0,

where o is the nth coefficient of f£,(z)* = Zkaj,"’z“, so that follows from
=

the Schwarz reflection principle

2F0)2 & a® _ n—1 a o
©) e B T = 0 Dot B + )
in the z-plane. Thus the left-hand side of (3) is due to a variation of the
range D,. In this note, we shall show that the right-hand side of (3) is
due to a variation of the domain D.

2. For a complex number 7, a real number < and a sufficiently
small 7 >0, we consider the finite w-plane slit along the segment S(7 ;7,7)
with end points 7 —7e’" and 7+ 7e¢'" and denote it by 27 ;r,7). For o,
—l<w<l,letd*(r ;r,7,0) and A4~(7;r,7,0) be the circular arcs with end
points 7 —re'" and 7 + re'™ where they make with 'S(r ;7,7) inner angles
being equal to mw. We denote by 4(7;7,7,0) the domain which is
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obtained from the finite w-plane when we delete the closure of the domain
bounded by 4*(r;7,7,0) U 4~(7 ; 7,7,0). Then the mapping function which
maps 2(r ;r,7) conformally onto 4(7 ;r,z,0) is obtained by

_ it ¥( _T+reif)1 w__l_(w____T_relT)l 7
) 1=re (Ww—T7+7re") " —(w—7—re™)~" 7

and hence it has the following expansion with respect to 7 :

e2ir

©) = WoT (g 0@ =0T et p() + 1.

‘ 3(w

3. For a real >0, we consider the mapping function which maps
4(r 5 7,7,1/2) conformally onto 2(r ;7, « + ). This is obtained by

®) g= AT g e

¢ a2
2 2 =7y

Now we set o =1/2 in (5) and substitute the resulting right-hand side
of (5) for » of (6). Then we have

(1 — 62“’)62_”

@) F=w—- 4w —7)

r? + o(r?),
which maps 2(r ; 7,z) conformally onto 2(r ; 7, ¢ + 9).

4, We note that the extremal function f,(z) can be continued
analytically in some neighborhood of each e=e'% on C:|z|=1, except
for finitely many points, because of the analyticity of the boundary curve
of D,. Let ¢=c¢et% be such a point on C. Now we set 7= f,(¢) and
ety = icfl(e)o +o(p), p=0—6, in (7) and then substitute f,(z) for w
there. We have

— olz) = (1—e*0)e?fr(e)? e 2
(8) f-g(z)—fn()‘*“mp + o(p?).

Normalizing g¢(z) so that the resulting function vanishes and its derivative
is 1 at the origin, we see that there is a function f*() in S with the
following form:

* — (1 - 6225) 2f77( ) (z) 2
(9) SH2) = fal2) + ) = Fe) ° + o(p?),

and hence

*(,) — & _ (1—9”5) 2f1(e)? & 2 2
10 s =z+ 3 |a AL (53 5 )0t + olen)e,
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Since f,(z) is the extremal function, we have

1 — et fh(e) & a
(11) %’1 i f,,<2> Z 7o 1 =0

where 4 is an arbitrary real number. Hence we have a result of Schiffer

[1]:

e f(e)? < _ap
12 F B
5. For 6,0<6,<2rn), p(—1/2<¢<1) and a small ¢ >0, C6,; p)
denotes the complement of the subarc r =1, 6, — p <0< 60, + p (z = re'’) of
C and I'(6,;p,9) the circular arc with end points e‘@=" and e*%*”
where it makes with C(6, ; p) inner angles being équal to (1+on. We
denote by D(f, ; p,¢) the domain bounded by C(f,; p) U I'(6, ; 0,¢). Then
the mapping function §¢=¢() with £0)=0 and &(0) >0 which maps
conformally D(, ; p,9) onto the unit disc |{|<<1, is obtained by

(13) &= eemtPlarox

[(i— éz—cos p/(1+sin p) ) (1 . &z—cos p/(1+sin p)
1—éz cos p/(1+sin p / 1—éz cos p/(1+sin p)
[(i— éz—cos o/(1+sin p) )/( ;_€x—cos p/(1+sin p)

1/+9) )
} —giPlat®

X

’
— P (AP

) 1/1+¢)
1—éz cos p/(1+sin p) 1—éz cos p/(1+sin o) ]

where ¢ = e¢*%. Hence the inverse function is obtained by

e )( eipl(]+¢)§)l+¢ (1 _|_ Ze—ipxeiﬂ/(lﬂa)__ eé‘)ﬂ-(o

i+
(L e )1 — getPra+opyi+e (7 1 P (eTPINFO _gpyive 0

(14) z2=¢—

so that we have the following expansion with respect to o :

— 9’ 24+ o)1 + &b) 2 2
(15) 2 C(l tea e —ep O Tl ))-

6. Substitute 20/(1 — ) for ¢ in (15) and the resulting right-hand
side of (15) for z of w= f.(z). Now compose this with (5), where
7= fale) and e'"r = ief;(e)p + o(p), and normalize the composite function
so that the resulting one vanishes and its derivative is 1 at the origin { = 0.
Then we see that there exists a function f*¢) in S with the following
form :
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18) 74 = £20) + {32y A QT — full) +

_-_(2 - (l)) zfn(e)zfn(g)z
AR A e A

Since f,() is the extremal function, we have for each o with sufficiently
small |wl,

@—w)efie) & a® —
(17 e S e~ s e (Do + 2.2 8 kera zo.

Thus we see that for the extremal function f,(2) in S which gives the
maximum value of the real part of a,,

— Nk — ezf:l(s)z > ai,k)
(18) (n—1a, + 2.2 2 k&' ay JAO) 1?:"2 Fale)®

on C.

By (12) the function ¢q(2) = (22f4(2)?/ fu(2)) é}z (@P/fn(2)¥) 1is real on C,
and hence we see by the Schwarz reflection principle that ¢(z) is a rational
function. By (18) the value of ¢(z) is equal to that of the rational function
(n —1a, +:§‘; ka/z"* + aiz®*) on C, so that we have the following result
of Schiffer [1]: For the extremal function f£,(z),

2202t & _aP n
(19) Tra 5 = (n— Da, + ;k( B+ @),
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