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Abstract

Let G be a unitary group of rank one over a non-archimedean local field K (whose residue field has a
characteristic ^ 2). We consider the action of G on the projective plane. A G(K) equivariant map from
the set of points in the projective plane that are semistable for every maximal K split torus in G to the
set of convex subsets of the building of G(K) is constructed. This map gives rise to an equivariant map
from the set of points that are stable for every maximal K split torus to the building. Using these maps
one describes a G(K) invariant pure affinoid covering of the set of stable points. The reduction of the
affinoid covering is given.

1991 Mathematics subject classification (Amer. Math. Soc): primary 32P05; secondary 14M17, 20G25.

Introduction

Let K be a non-archimedean local field. We assume that the characteristic of the
residue field of K is ^ 2. For a separable algebraic extension L D K of degree two,
we consider the action of the unitary group SU3(L) on P| . The rank of the unitary
group is assumed to be one.

Let Y" and Ys be the subspaces of P2
L consisting of the points that are semistable

and stable, respectively, for every maximal AT-split torus 5 C 5f/3(L). Here one takes
the 5-linearization coming from the (unique) 5f/3 (L)-linearization of some ample line
bundle on P2

L. All ample line bundles give the same set of (semi-) stable points, since
they are all powers of the ample line bundle ^(1).

Let B denote the Bruhat-Tits building of 5i/3(L). Since the rank of SU3(L) is one,
the building is a tree.
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372 Harm Voskuil [2]

We construct a map / : Y" — • {convex subsets of B] that is S£/3(L)-equivariant.
A complete description of the convex subsets that are in the image of / is given (See
Theorems 5.10 and 6.2). In particular we prove that I(x) is bounded if and only if
x e Ys.

The map / is then used to construct a pure affinoid covering of the rigid analytic
space Ys. The components of the reduction of Ys with respect to this affinoid covering
are proper. There is a 1-1 correspondance between these components and certain
bounded convex subsets of the building B (See Theorem 7.5). In the last paragraph
we describe the components of the reduction of Y5. Giving a reduction of Ys is
equivalent to giving a formal scheme over L°, the ring of integers of L, that has as its
generic fibre the analytic space Ys and as its closed fibre the reduction of Ys.

Let F C 5f/3(L) be a discrete and co-compact subgroup. Then Ys/ F is a separated
rigid analytic space. Since the group F has infinitely many orbits on the components
of the reduction of Ys, the quotient is not proper. Moreover we do not expect that
the quotient itself can be compactified (See 8.13). This is in contrast with similar
spaces considered in [4]. There one always assumes that the sets of stable and
semistable points coincide. Then the quotient is proper. On the quotients of the
spaces considered in [4] there exist no non-constant meromorphic functions (except
for some cases related to Drinfeld's symmetric space). On the quotients Ys/ F of the
space Ys studied here there do exist non-constant meromorphic functions. This will
be treated in a forthcoming paper.

Finally I would like to thank Marius van der Put and King Lai for their help and
encouragement and Michel Gros for asking too many questions about SU}(L).

1. The group SU3(L) and its building

1.1. Notation.

(1) K: a non-archimedean local field with Cbax(K) ^ 2.
(2) K: the residue field of K.
(3) L D K: a separable algebraic extension of K of degree 2.
(4) n: a generator of the maximal ideal of L°.
(5) T: the generator of Ga\(L/K); we write x := T(X) for x e L.
(6) K°,L°: the ring of integers of K, L.

(7) Vo = (£0)3: an L°-module with on it the unitary form f(x,y) = x\y~2 + x2y~\ +
2x0y0.

(8) V := Vo <8> L: on it we have the unitary form / <g> L which we also denote by / .
Note that if Char(/O ^ 2, every unitary form on V that gives rise to a unitary
group of rank one can be brought into the form / after a suitable choice of the
basis.
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[3] Unitary group actions on projective planes 373

(9) G: the linear algebraic group defined over K° that acts on Vo preserving / . Since
we have not defined the module Vo over K°, the action of G on Vo is not defined
over K°. However one can define a linear action of G on Vo

 x Vo over K° by
letting g e G act as g x x{g) (See also 2.1).

(10) G(K°) = SU3(L°) and G(K) = SU3(L).
(11) 5 c G: the torus in G that is diagonal with respect to the coordinates x0, x\, x2

of Vo.
(12) S(K) = K*: the maximal /f-split torus in G{K) coming from S.
(13) Z: thecentraliserinGof S. OnehasZ(A") = L*. The subgroup Z(£) c G(K)

consists of all the elements that act diagonally with respect to the coordinates
XQ, X\, X2.

1.2. The building of SU3(L). The Bruhat-Tits building B of SU3(L) is a tree.
We give a combinatorial description of B. The vertices of B correspond 1-1 with
equivalence classes of certain JL°-submodules of V = L3. The equivalence relation
is given by:

M~N if and only if 3 (A. e L*) such that M = X • N

for M, N c V L°-modules. One denotes the equivalence class of M by [M].
Let e0, e\, e2 be an L-basis of V such that the unitary form / has the standard form

f(x, y) =^1^2 + x2y\ + 2x0y0 with respect to this basis.
One takes the following two L° submodules in V:

Mo := (e0, eu e2), Mi := (e0, neu e2).

The building B is given by :

vertices: SU3(L) images of [Mo] and [Mt]

edges (or chambers) : SU3(L) images of {[Mo], [Mi]}.

The tree B depends on whether L/K is ramified or not. Let q := $K; then B has
the following form:

\ [Mo]
q + 1 __^p) ^ ^ 9 + 1 if L/K is ramified;

+ 1 ^ ^ Q ^ ^ 9 + 1 if L/K is unramified.
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1.3. The root system. The root system of 5f/3(L) is of type BC\. One has for the
maximal K split torus S(K) = K* four additive groups U±2a C U±a in St/3(Z.). The
group Ua consists of the elements ua(a, ft) and £/_„ = {«_„(«, ft) € SU^L)} which
are as follows:

ua(a,b) e2 ->• e2 + ae0 +

e0 - • e0 - 2aex

U-a(a, b) e2

ei + ae0 + be2

e2

e0- 2ae2.

In both cases a and b satisfy: laa + b + b = 0.
Now U2a C Ua is Uza = {ua(0, b) | b+b = 0} and U_la = {w_a(0, b) = 0}.

1.4. The affine root system. Let v denote the additive valuation of L with v(n) = 1.
One defines the following subgroups of U±a and U±2a for n el:

(1)

(2)

(3)

(4)

Un+a :={ua(a, ft) eUa | v(b)>2n);

{/„_„ := {u_a{a, ft) e £/_„ | v(ft) > 2n};

Note that v(b) > In implies v{a) > n, since 2aa + fe + fc = 0. If b + b = 0, then
ft = c • y, for c € K and y e L fixed such that y + y = 0. If L/K is unramified, one
can choose y s.t w(y) = 0. Hence {u(ft) | b + ft = 0} = Z.

If L/K is ramified one can choose y such that u(y) = 1. Hence (i>(ft) | ft + ft =
0} = {2« + 1 | n e 1} in this case.

This gives us the following affine roots for S(K) = K* in SU3(L):

2n + 1 ± 2a, n ± a, n e Z if

n ± 2a, n ± a, n e Z if

The affine Dynkin diagrams for these root systems are:

1 1
, < a if L/K is ramified (C - BCX)\

is ramified;

is unramified.

if L/K is unramified (C - BC\V).

(For more details see [3, §10.1] or [7, §1.16].)
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1.5. Parahoric subgroups. In the building B there is an apartment A associated
to the maximal /f-split torus S(K) = K*. Its vertices correspond to [Mn], n e Z
where M^ := {eo,n

neu iz~ne2) and M^+i •= (e0, n
n+xeu n~ne2). We will denote

the vertex in A belonging to [Mn] by n.
One easily sees that Un+2a stabilizes the vertices m < n and Un+a the vertices

m < n/2. Moreover, £/n_2a stabilizes the vertices m > ^n and Un-a the vertices
m > -n/2.

The parahoric subgroups are the stabilizers of the vertices and edges in B. They
are generated by Z(K°) and the additive groups stabilizing it.

For the edge {0, 1} one finds as stabilizer the group generated by Z(K°), Ui+a,
U0-a, Ul+2a and [/0_2a, if L/K is unramified. If L/K is ramified this parahoric
subgroup is generated by the groups Z(K°), Ux+a, f/0-a, Ui+2a and U^^.

1.6. The subgroups SU2(L) c SU3(L). The elements u±a(0, b), b+b = 0 generate
a subgroup SU2(L) C SU3{L). Since SU2(L) = SL2(K), this gives an embedding
of the SL2(K) building in the building B of SU3(L). Note that both groups have the
same rank and that both buildings are trees.

The torus S(K) is contained in SU2(L). It acts on the apartment A belonging to
S(K) = K*. The additive groups for K* in SU2(L) are U±2a. The associated affine
roots are n ± 2a if L/K is unramified, and In + 1 ± 2a if L/K is ramified. Hence
the vertices of A which are also vertices in the SL2{K) building are n if L/K is
unramified and In + 1 if L/K is ramified.

We define B2 := \Jg<=su2(L) 8(A) C B- T ^ " B2 C B is the SL2(K) building. This
embedding B2 <->• B is simplicial if L/K is unramified. If L/K ramifies, then every
SL2(K) chamber consists of two chambers (for SU3(L) in B).

The embedding B2 <^>- B is unique since a maximal jST-split torus A"* c SU2(L) c
5f/3(L) determines a unique apartment A c B .

The subgroup SU2(L) preserves the decomposition < e0 > © < eit e2 > of V
and the unitary form x^y2 + x2yi on < eu e2 >. From this it also follows that the
apartment A c B is contained in exactly one SU2(L) sub-building.

2. The action of the torus on W2
L

2.1. Preliminaries. The group G acts on P2
L0 = P(Vo)- This action is not defined

over K°, but over L°. However, there exists a scheme S c P(Vo x Vo) defined over
tf° such that S ® L° = P(Vox < 0 >) U P(< 0 > x V°) = P2

L0 U P2
L0. The action of

G on S is defined over K°. The group Gal(L/Af) permutes the two components P2
L0.

The torus S C G acts on X := P(V0) = P ô- This action is defined over L°. We
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376 Harm Voskuil [6]

make the following definitions:

X" :— set of semistable points for 5 = {x e P2^ | x2 or x{x2 is invertible},

Xs
s :— set of stable points for S = [x e P2

L<> \ xix2 is invertible}.

Note that the centraliser Z(K°) = (L0)* of S(K°) acts on both spaces.
Let / be a homogeneous polynomial of degree n. Then / is called invertible at

x e Xs
s
s if \f(x)\ = max{|x,r | i = 0, 1, 2}. In particular this means that / ^ 0 on

the closed fibre of Xs
s
5. Furthermore one has:

Xs
s
s®L = {xeP2

L\x2^0 v x ^ 2 ^ 0 } = P2 - {(0,1,0), (0,0, 1)},

X5
S ® L = {x e P2 | xxx2 ^ 0} = P2 - {(x0, xi, 0), (x0, 0, JC2)}.

2.2. Analytifications. To each algebraic variety corresponds a rigid analytic variety
which has the same set of closed points (See [2] or [1]). We denote the analytic
varieties corresponding to Xs

s <g> L and Xs
s
s <g> L by YA and YA respectively. Here A

is the apartment in B belonging to S(K).
We also need some analytic spaces corresponding to X" and Xs

s. The set of points
of these spaces consists of their closed fibres. They are:

Y"<A := the completion of Xs
s
s along the closed fibre

= {* € YS
A

S | \xlX2/x
2\ < 1, |*i/xo| < 1, U2A0I < U

U {x € YS
A

S I \x2/Xlx2\ < 1, |*,/*2| = 1}.

YgA := the completion of Xs
s along the closed fibre

= {xe YA
S I \x2/Xlx2\ < 1, |* ,A 2 | = 1}.

Here the suffix 0 corresponds to the vertex 0 € A. In fact we need similar analytic
subspaces for every simplex, that is, vertex or edge, a e A. This is done as in [4,
§3.3, §3.4].

First we analytify the torus S <g> K. From now on 5 will denote the analytification
of S <g> K. For each simplex a e A one defines the affinoid subspace Sa C S by:

Sa : = S p ( K { n n
X \ n e l , X e * ( S ) , n + x > 0 o n a ) ) .

For this definition one has to identify the apartment A with the dual of x(S) <g> R.
Equivalently one can also define Sa by Sa := {s e S | s • 0 e a}. Here one identifies
A = R, and s € S acts on A by translation by 2 • v(s\).

Our torus S has, with respect to the coordinates xo,x\,x2, a diagonal form s =
diag(s0, si, s2) with s0 = 1, S]S2 = 1. Hence one may put s{ = t, s2 = t~l and s0 = 1.
For the standard chamber a0 = {0, 1} = [[Mo], [Af,]} one has

Sao = Sp(K{t,nr2)).
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As in [4] one defines:

Ys — S1 . Ys - I r . r l f f ? r (= Ys \- Yss — <? Yss

Note that in [4] one restricts to the case where the variety X satisfies Xs = Xss.
Therefore the spaces Y*A and Y"A coincide. Since in our case Y^A ^ Y™A, we cannot
use these spaces to construct an affinoid covering of YA. For that we need to do a little
more.

First one needs a definition.

DEFINITION 2.3. For x e YA we define the interval ofS semistability by:

IA(x) := {*"' • 0 | s • x e Y£A, s e 5} C A

Here s e S means S e S(K^), where K^ is the algebraic closure of K. Hence if
one puts A S K , the points s~x • 0 are in Q. This is the reason one takes the closure
[s'1 • 0 | . . . } instead of just {...}.

This map IA which associates to a point x e YA a subset of A replaces the function
VX.T.L '• Y" ~> A used in [4]. One has:

PROPOSITION 2.4. Letx e YS
A

S. Then:

(1) IA(s-x) = s-IA(x) for alls € 5.
(2) IA(x) C A is convex.
(3) IA(x) = A if and only if x = (1,0, 0).
(4) IA(x) C A is a half-apartment if and only if x e YS

A
S - YS

A, x ^ (1, 0, 0).
(5) IA(x) C A is bounded if and only if x e YA.

PROOF. Part 1 follows directly from the definition of lA(x). To prove the other
statements, we will describe IA(x) for all x e YA.

If x = (1, 0, 0) then x e Y"A. Furthermore x is a fixed point for 5. This proves
IA(X) = A.

If x 6 Y" and |JCQ | < |JCIJC2|, then x € YA. We may assume |JCI| = |JC2| after
replacing x by s • x for suitable s e S. Now x e Y£ A and one easily sees that IA(x)
consist only of the point 0.

If x = (x0,xu0) with xo,xy ^ 0, then by using 1 we may assume |*0| = |JCI|.

Then s • x e Y^A if and only if |^i | < 1. So IA (x) is a half-apartment in this case. The
case x = (x0, 0, x2) is similar.

The only points in Y" not yet treated are those with 1*1*21 < \x% | and x{x2 ^ 0.
It is enough to treat those * with |*t | = |*2| < |*o|. Now s • x e Y^S

A if and only if
k * i l < kol and |s2*2l < \xo\- Since \sx\ = | ^ ' | one finds |*2/*0| < h i < |*oAil
in this case. Hence IA(x) is a bounded interval in A.
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We now have treated all points x € YS
A

S. One easily verifies that statements 2 to 5
hold.

PROPOSITION 2.5. Forx e YS
A

S one has:

(1)
(2)

x €

x 6

*°A if and only ifIA(x) D a ± 0.
g A if and only if IA(x) is a point contained in a.

PROOF. Part 1 follows directly from the definitions. Part 2 follows from x e Y£ A

if and only if IA(x) = {0}.

REMARK 2.6. The space Y* A is affinoid, but Y*S
A is not. One can cover Y"A by

the affinoid subspaces Ys
a A and Y"J. Here YSJ^ := {x e Ys

a\ \ \xxx2/xl\ < 1}. The
covering {Y*aA, Ys

a
s+) of Y£A is pure.

Let ^ := {Ys
aA \ a e A} and ^ := {Ys

aA, YSJ>+ | a e A}. In the figure below we
draw the covering
L.

using the values of V(XJ/XJ), where v denotes the valuation of

= 0

v(f2) = 0

PROPOSITION 2.7.

(1) (a) I U ^ . . = I
(b) The covering' is pure.

is a point) = {x e |jcg/jc,jc2| <
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(c) The components of the reduction of \JasA Y^ A with respect to the covering
^ are not proper.

(2) (a) L U 1^ = 17-
(b) The covering &" ofYA is not pure.

PROOF. Parts l(a) and 2(a) are a direct consequence from the previous proposition.
The other parts of the proposition follow more or less immediately from the picture

of the covering ^S
A

S given above, using [8, §2]. Note that 5 translates along the line
= 0 in the picture above.

REMARK 2.8. The proposition above shows that one cannot use the affinoids Y*
A

and Y"A to get a good affinoid covering of YA or YA. Before we give a pure affinoid
covering of YA we need to know IA(x) in more detail. First we need a definition.

DEFINITION 2.9. For x e YS
A the interval IA(x) has two extremal points Pi and P2.

There exists a unique point P3 € A which has equal distance to both Pi and P2. Hence
one can define:

vA(x) := P3 = (Pi + P2)/2.

Note that one cannot extend vA to YA .
As before u will denote the additive valuation of L, such that V(JT) = 1, extended

to the algebraic closure of L (or K). Also we identify A with R such that the vertices
correspond to the integers as before. The interval with extremal points Pi and P2 will
be denoted by [Pi, P2]A := convex hull of {Pt, P2}. Using this definition we obtain:

PROPOSITION 2.10. Forx € YS
A one has: vA(x) — v{xx/x2) and

. . , _ \[2v{xo/x2),2v(xx/xo)]A if

|(^W1 if

PROOF. First we remark that s e 5 acts on A by translation with v{sx/s2) = 2v(si).
So the descriptions in the proposition satisfy vA(s-x) = s-vA(x)andIA(s-x) = s-IA(x)
as they should.

Hence it is sufficient to prove the theorem for x e YA with |*i | = \x2\. If
X\X2\ > xl\ then IA(x) = {0}. Hence vA(x) = 0 and the proposition holds in this

case.
If \x\x2\ < |JCQI and \x[\ = \x2\, then s e S with 5 • x e Y£S

A satisfy \s\X\\ <
< |jco|- Hence one has \x2/x0\ < \s{\ < |JCO/*II- NOW s~l • 0 6

[2v(xo/x2), 2v(xJxo)]A in this case.
IA(x). Hence one finds v{xx/xG) > v{sx ') > v(xo/x2). Hence one has IA(x) =
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COROLLARY 2.11. For x e YA one has:

IA{x) = {z e A | dist(uA(x), z) < max(0, v(Xlx2/x^))}.

PROOF. If V(X{X2/XQ) < 0 then IA(x) is the point vA(x). Hence the proposition
holds in this case.

If v{xxx2/xl) > 0, then IA(x) = [2v(xo/x2), 2v(xx/x0)]A and vA(x) = v(xx/x2).
Now 2v(xi/x0) — v(xx/x2) = v(x\/xl • x2/xx) = v{xxx2/xl). So the proposition also
holds in this case.

3. A pure affinoid covering of YA

A do not cover all of YA we have to construct3.1. Since the 'natural' affinoids
some additional affinoids. One wants the covering to be Z(K) invariant.

Such affinoids can be constructed in the following way. Let <j> : [xe YS
A

xQ ^ 0} —> R2 be the map x —>• (v(xQ/xx), v(xo/x2)). The inverse image of a
bounded convex polyhedron in E2 whose faces are contained in rational lines is an
affinoid subspace of YA. In particular if one covers K2 by polyhedra as above such
that the intersection of two such polyhedra is a face of both and such that each 0-
dimensional face (that is, vertex) is contained in only finitely many polyhedra, then
the corresponding affinoid covering will be pure (See [8, Lemma 2.4]).

In the figure below we give the polyhedra in K2 corresponding to the affinoid
covering ^ of YS

A we will use.

- 1 - 2 - 3 - 4 - 5

If one knows the point <p(x) for x e YA, then one can easily determine vA{x) and
IA(x). In fact, for x, y € YA with |JCIX2/X

2| < 1 one has <j>{x) = <f>(y) if and only if
IA(x) = IA(y).
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The affinoid covering ^A consists of the following affinoids:

Y{pu p2, o}A := {x e YS
A | IA(x) C convex hull of{p,, p2},

IA(x) n Pi^id,i = 1,2, vA(x)e a}.

Here a e A is a chamber and p, c A is the union of two neighbouring chambers
bounded by two vertices of type 0, that is, p, :— [2n,, 2rc,+2]/4,n, € Z. For notational
reasons we will write p, € A for p, c A . We only consider triples px, p2,o such that
Y[pu p2, a}A is non-empty. Once one fixes px and p2 there are exactly four choices
for a such that Y{p\, p2, cr}A is non-empty. Of these four choices, two correspond to
polyhedra in the picture above. The other two correspond to one-dimensional faces if
p, = p2 and to vertices if p\ ^ p2. By allowing a to be a vertex one can obtain the
faces of the polyhedra in the skew lines. If one allows one of the p, to be a vertex of
type 0, one obtains the faces of the polyhedra that are contained in the horizontal and
vertical lines in the picture above.

Note that if a C p one has:

Y{p, p, a}A = {xeYs
A\ IA(x) C p , vA{x) € a} D Ys

aA.

The reason that one uses the subsets p, C A, instead of chambers in the definition
of the affinoids, is that this choice associates L°-submodules of L3 to the vertices of
the polyhedra in the picture. Had we used chambers, those modules would only have
been defined over a finite extension of L°. Our choice will therefore ensure that the
components of the reduction of Ys will correspond to L°-modules (See also Remark
8.11).

In the proposition below we state all the relevant properties of our affinoid covering

P R O P O S I T I O N 3 .2 . (1 ) ( J , , ^ A Y{pi,Pi, <r} = {xeYA\ vA(x) e a}.

( 2 ) UPl,P2,aeAY{PuP2,°} = YA.
(3) The affinoid covering ^A = {Y{pu p2, a}A \ pu p2,a e A] is pure.
(4) The components of the reduction of YA with respect to ^A are proper.
(5) There is a 1-1 correspondence between components of the reduction and integer

intervals [2n, 2m]A c A, n, m e Z.

PROOF. Statements (1) and (2) are obvious. The statements (3) and (4) are proved
as in [8, §2]. The last statement of the proposition follows from the fact that the
extremal points of the polyhedra in the figure above correspond with the integer
intervals [2n, 2m]A in A.

https://doi.org/10.1017/S1446788700001075 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001075


382 HarmVoskuil [12]

4. The action of SU3(L) on P |

4.1. In this section we study the affinoids Y^ and Y". We then define an interval
/ (x) of semistability for x with respect to SU3(L), and study the connection between
ya" and /(*) for x e F" . Analogous to [4, §3.5, 3.6], one defines:

DEFINITION^. Y' := ngesu3iL)8(XA) ™* Y" •= ngesu3iL)8(.Y") Let A' C S
be an apartment and a' e A' a simplex. One can find a e A and g e SU3(L) such
that g(a) = a' and g(A) = A'. Then one takes:

Y'a..A.:=g(Y'aJ and r£A, :

Moreover one needs:

As in [4] the subspaces Y* c Y* A and Y" C Y*\ are nice open subdomains.

DEFINITION 4.3. As in [4, §3.6] we define a function rAuAl, which is useful for
studying the affinoids defined above. Let A\ = gi(A) and A2 = g2(A) with g, e
SU3(L). Forz € P2

L define:

rAl,A2(z) := max{|g**,g*.X2(z)| , |g*^o(z)|}/max{|g*Xig*^2(z)|, |g2*o(z)|}-

This function now has, mutatis mutandis, the same properties in our situation as in

[4].
In the lemma below we state the properties of rAuAl which are either obvious or for

which the proof is exactly as in [4, §3.6].

LEMMA 4.4. (a) rgAA(x) is well defined for x e YS
A

S.
(b) rgAA(x) only depends on A and gA and not on the choice of g e SU3(L).
(c) rghAMA(x) • rhA<A(x) = rghA,A(x) andrgA,A(x) = (rA,^(*))"'•
(d) x e Y»A implies rgA,A(x) < 1 V(g e Pa).

Here Pa denotes the stabiliser of a in SU3(L).

DEFINITION 4.5. Define:

(O if JC $YS
A

S,
r(x) := \ A

\wf[rgA,A{x) | g 6 G(K)} ifxeY*/.

One has:

PROPOSITION 4.6. (a) x e Y**gA and rgAtA(x) = r(x) > 0 if and only ifx e Y£s.
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(b) x e Yss if and only ifr(x) > 0.

PROOF. The proofs of similar statements in [4, 3.6(d), (f)] remain valid in our case,
mutatis mutandis.

DEFINITION 4.7. To understand the analytic space Yss better, define, for x g Yss,
the interval of SU3(L)-semistability by

/(*) :={zeB\V(A3z)ze IA(x)} c B.

Here/gAO),g g 5f/3a) , is defined by IgA(x) := g(IA(g~l (x))). This is well defined,
since t(IA(rl(x))) = IA(x) for t e Z(K).

From the definition one gets:

Oe /(*)ifandonlyif;c e Fo".

A close look at the proof of in [4, 3.6(f)] gives us:

PROPOSITION 4.8. x e Y" if and only if

W(AuA2aa) IAl (x) Ha = IA2(x) Ho ? 0.

PROOF. It is sufficient to proof it for a g A a chamber. Let z 6 IA(x) Da; since
x € Y"A, such a z exist. It is now sufficient to prove, for all z e IA(x) n a, that
z e /^A(^) H CT for all g € PCT. It is sufficient to prove it only in case z e Q C A = K.

We take a finite extension K' D K such that z e 2u((A"')*). Now there exists an
element s e 5(/i:') = (if')* such that z = s'1 • 0. We put ^ := s'1 • (YgA ® AT').

Clearly we have z e /A(X) if and only if x e Y"A.
We put Y? := ng€/>^(y"A)- S i n c e rgA,A{x) < ' l , V^ e Pa, and rAiA(jc) = r(x) =

1 by Proposition 4.6(a), we must have rgA A(x) = 1 for all g € Pa.
Hence x e Y". In particular x e y^A and therefore z € /g/i(jc) for all g e Pa.

This proves the proposition.

PROPOSITION 4.9. (1) x e Ys
a
5 if and only ifI(x)Da^ 0;

(2) Let R(x) := [A' c B \ rA,tA(x) = r(x)}. For x € Yss one has:

(3) x € Y^ if and only ifl(x) is a point contained in a.

PROOF. The first statement follows directly from Proposition 4.8. The second
statement is a direct consequence of Propositions 4.8 and 4.6. The third part is clear
from Definition 4.7.
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COROLLARY 4.10. (1) I (x) is convex.
(2) x e Ys if and only if I(x) is bounded.

We will omit the proof of this corollary, since it is also a trivial consequence of
Theorem 6.2 below. Now we can state what remains true of [4, Theorem 3.6] in our
case.

PROPOSITION4.11. (1) Yss = \JaeBY^s.
(2) (a) Y^ n Y*2 = 0 if ox Pi a2 = 0 and equals Y*} ifox n <r3 = CT3.

(3) The covering c€s := \Ys
a \ a € B] is pure. It covers the space

{x e Ys | / (x) is a point] S 1".

PROOF. Except for 2(b), everything follows easily from the previous propositions.
As for 2(b), we note that for ax, a2 e B one can find x such that I(x) n CT, ̂ 0 and
/(JC) n CT2 ̂  0 as follows.

Clearly if aua2 € A one can find JC such that a{n IA(x) ^& and CT2 n IA(X) ^ 0.
By choosing x carefully one may assume that A c R(x). Hence IA(x) C /(JC). So
we have constructed a point x e Y" D Y".

5. The action of SU2(L) on ¥\

5.1. Before determining the interval of Sf/3(L) semistability for * e ysi it is
useful to study the interval of semistability with respect to the subgroup SU2(L) c
SU3(L). One has an 5(/2(L°)-equivariant map <p : ¥\0 - {(1, 0, 0)} -> P[o, given by
(p(x0, x\, x2) = (*i, x2). One can use the action of SU2(L) on P[ to study the action
of Sf/2(L) on P| . Since SU2(L) = SL2(K) the space of points in P[ which are stable
for all maximal A"-split tori in SU2(L) is essentially Mumford's upper halfplane Q{.

5.2. The action of SU2(L) on P[. Let SU2(L°) act on P[o respecting the unitary
form f{x, y) = x{y2 + x2yx. For the torus 7 c SU2(L°) acting diagonally for the
coordinates xux2, the sets of stable and semistable points (P1)^ and (P1)" coincide,
that is, (P')s

r = (P1)". In particular, all the results of [4] apply to our situation.
Let B2 be the building of SU2(L) = SL2(K) and A c B2 the apartment belonging

to T(K). Let &A be the analytic space corresponding to (P[o)" ® L and %A the
completion of (P1)" along the closed fibre.

One has: 2?A = {x e P[ \ x{ ^ 0 A X2 + 0},

%,A = {xe2?A\ \xjx2\ = 1}.

https://doi.org/10.1017/S1446788700001075 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001075


[15] Unitary group actions on projective planes 385

The interval of 7-stability is given by:

Here x e 2?A and T denotes the analytification of T ® K.

Define: 2f := C\g€SU^L) g{2fA) and for x e 3? take as interval of SU2(L) semista-
bility

/ ( * ) P . :={zeB2\V(ABZ) z €

Note that J^ = ft, := P[ - {x \ xjx2 = c • y, c <= K or x2 = 0}. Here y e L is an
element such that y + y = 0, y ^ 0.

From (P')r = (P 1 )" o n e directly concludes the following:

PROPOSITION 5.3. (1) For x e 2fA the interval IA(x)P< is a point.
(2) For x e 2f the interval I (jc)pi is a point.

DEHNITION 5.4. Let H c B be the SU2(L) building regarded as a subcomplex
of the SU3(L) building B. Let A c H be an apartment. We define the following
spaces:

For JC e y^J one can now define the interval of SU2(L) semistability by:

IH(x):={ze H \V(A3ZAACH) Z e

We take <p : P£o - {(1, 0, 0)} -> P[o, p(;c0, x,, J:2) = (AT,, x2) as before. We will also
denote the map <p ® L : ¥\ - {(1, 0, 0)} -> P[ by ip.

PROPOSITION 5.5. YS
H = (p

PROOF. One easily sees that if A c H, then YS
A = (^" '(J^) . Now the proposition

follows from the definitions of YS
H and 2f and the fact that <p is 5C/2(L)-equivariant.

PROPOSITION 5.6. Forx e YS
A one has vA(x) = IA(<p(x))Pi and

IA(x) = [zeA\ dist(z, /A(«»(JC))PO < max (0, v (xxx2/xl))).

PROOF. Since s • vA(x) — vA(s • x) and <p is 5-equivariant it is sufficient to proof
it for x with I*, | = \x2\. Then vA{x) = 0 and clearly <p(x) € %tA. Hence vA(x) =
IA(<P(X))P> = 0 in this case.

Now the second statement follows immediately from Corollary 2.11.
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DEFINITION 5.7. For y e B and r > 0 define

C(y,r) :={zeB \dist(y,z) <r}.

PROPOSITION 5.8. Letx <= YS
H

S and let 0 e A be the usual vertex. Then

C(0, r) n A C /„(*) imp/jes C(0, r) n / / c /W(JC).

PROOF. If r = 0 the statement is trivial, so we assume r > 0. Since C(0, r) n A C
/A(;c) we have v{xxx2/xl) > r > 0. The fact that 0 is in the centre of C(0, r) actually
gives us v(Xi/x0) > r/2 > 0, j = 1, 2.

If h e Po n SU2(L), then I>(A*JC(-(JE)/;CO) > min(u(A:i/^o), u(*2/*o)) > r/2> s i n c e

^ € FO
SS

A. Hence C(0, r) n hA c 4 A ( ^ ) - Since 0 e /H(x) and 0 e /zA, we use
proposition 4.9 (2) to obtain //MOC) C IH(X) for all A e Po n SU2(L). Therefore
C ( 0 , r ) n « C

DEHNITION 5.9. For x € YS
H, we put vH(x) := I((p(x))p>. We say A determines

/«(x)if:

(1) V(A' C / /) /A(JC) C A' implies /A.(x) = IA(x).
(2) j e y j implies uw(x) e A.

x € YS
H

S — YS
H implies IA(x) is not bounded.

THEOREM 5.10. Let x e YS
H

S and suppose A determines IH(x). Then:

(1) x e YS
H implies IH(x) — C(vH(x), max(0, v(xxx2/x*))) n H.

(2) x = (1, 0, 0) wip/ies /„(*) = H.
(3) x e 7£ - 7^, x ± (1,0,0) /m/>/i^ /H(JC) = \Jg^g(lA{x)). Here U^ C

SU2(L) stabilises the limit point of the half-apartment containing

PROOF. (1) Since IA((p(x))p> = I(<p(x))Pi for all A containing I(<p(x))p<, we have
vA(x) = vH(x) for all A c H such that vH{x) e A. Furthermore, |ft*JC,-/*,•(*)I = 1»
i = 1, 2 for all h e Pa C\ SU2(L). Here vw(*) € CT € A.

Hence /Ai4(jc) = C(vw(x), max(0, uUiX2/^))) n ftA for all ft e Pa n SU2(L).
Furthermore vH(x) e hA implies //MO0 C IHW- NOW it is clear that IH(x) =
tf n C(WH(JC), max(0, v(Xlx2/x*))).

(2) If A; = (1, 0, 0) then IA(x) = A. Since x is a fixed point for the action of SU2(L),
we easily conclude IH(x) = H.
(3) Take x e Yss — Ys such that /,, (x) is a half-apartment and A determines IH (x). Let
C/2a be the additive group in SU2{L) c SU3(L) stabilising the limit point of IA(x).
Let g € Uia. Then A n gA is again a half-apartment. Clearly IA(x) (1 gA c IgA(x).
Let v be the extremal point of IA (x) c A. We may assume that the vertex 0 e A D g A
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and 0 € IA(x). If y e gA then IgA(x) = IA(x), since A determines IH(x). So let us
assume that y ^ gA.

If y # gA then C(0, dist(O, y)) D A c /„(*)• Hence C(0, dist(O, y)) D / / C /„(*)
by Proposition 5.8. In particular gIA(x) C /g/tC*)- From the assumption that A
determines IH{x) one easily concludes IgA(x) = g(IA(x)). Clearly IgA(x) C IH(X).

Now statement (3) follows.

6. The intervals of S{/3(Z,)-seinistability

6.1. Let x e Yss. The interval of Si/3 (L) semistability / (x) is convex. In particular
one can find an apartment A C B satisfying the following conditions:

(1) VA' C B IA(x) C A' implies IA,{x) = IA(x)
(2) x€Y' implies \IA(x)\ = max{|/A-(jc)| | I Ax) C I(x)}

x e Yss - Ys implies IA(x) is not bounded.

If A satisfies these conditions we say that A determines I(x). One easily sees that
IA(x) C I(x) if A determines I(x).

The apartment A is contained in a unique SU2(L) sub-building H c B. From the
definitions it follows immediately that A determines IH(x). In fact one has:

THEOREM 6.2. Let x e Yss and assume that A C B determines I(x). If H is the
SU2(L) sub-building that contains A then I(x) = IH(x) C H C B.

PROOF. From IA(x) C I(x) we conclude 1 = rAA(x) = r(x). If cr e A with
a n /A(jt) ^ 0, then rhA,A(x) = r(x) = 1 for all h e Pa. Hence IhA(x) c /(JC).

Taking the union of the IhA(x) for all h € Pa f~l SU2(L), for all CT e A such that
a n /AOC) ^ 0, we obtain /«(x). So /wQc) C /(x). Doing the same for all h e Pa,o
as above we find IH(X) = I(X)F\ H.

Suppose I(x) n H ^ I(x). Then there exists a vertex u and an apartment A' such
that A'PiH = [v] (char(^) ^ 2), v € I (x) H H with I Ax) ^ M- The embedding
of H c fi is such that there exists A' c B such that A' D H = {v} only if u is of type
0. So it is sufficient to treat the case v = 0 e A C H.

Firstly we assume that 0 is an extremal point of /#(*) considered as a subset
of //. If IA.(x) ^ {0} there exists an apartment A" such that A" D /A(JC) and
IA"(x) fl /A(JC) ^ {0}. Hence IA(x) ^ IA»(x). This cannot be, since we assumed that
A determined I(x).

Now we assume that 0 is not an extremal point of IH(x) considered as a subset
of H. Now A' = hA with h e Po. We may assume h — ua(a, b)u-a(c, d) with
\a\ = \c\ = 1. Since hA f~l A = {0} we also need to assume |cfc + a| = 1 (this
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implies \a — c~l = b + (cc)~x | = 1.) Explicit calculations for h as above show that
IhA(x) = {0}. Hence I(x) c H and the theorem follows.

REMARK 6.3. If A and A' are two apartments that determine / (x), then the SU2(L)-
buildings H and H' containing A and A', respectively, might be different. However
we still have: IH(x) — IH(x). In particular, IH(x) C H n / / ' .

DEFINITION 6.4. Let JC e Ys and suppose A determines I(x). Then we define
us(.x) ;= vA(x). Note that this does not depend on the choice of the apartment A that
determines I (x).

In the next proposition we show how IA(x) is related to I(x) for any apartment A
in the building B.

PROPOSITION 6.5. Let A C B be an apartment and x G Y". Then

(1) IA(x) = /(jt)nA, ifAni(x) ^ 0 .
(2) /^(JC) w tfie verte* w A closest to I(x), if A(l I(x) = 0.

PROOF. The first statement is a direct consequence of Proposition 4.9(2). So we
only have to prove the second statement.

Let A c B be an apartment such that A D / (x) = 0. Let <r e A be a chamber such
that 7,4(*) n CT ̂  0. There exists g € P<, such that gA n I(x) ^ 0. Hence IgA(x) =
I (x) n g A, according to statement (1). Furthermore it follows from Proposition 4.6(a)
thatrgAtA(x) < 1.

Clearly we can choose g in either Pa n Ua or Pa D U-a. We will only treat the case
where g e Pa H Ua, since the other case is similar. Without loss of generality we may
assume that A is our standard apartment and that a is the chamber corresponding to
the modules [Mo] and [Af_i]. Hence g = ua{a, b) with \a\, \b\ < 1.

We will firstly prove that IA(x) consists of a single point. Let us assume that
IA(x) is not a point. Then /^Cx) n o = [2u(xo/x2), 2U(^ 1 /X 0 ) ]A n [ - 1 , 0]A ^ 0.
In particular v(xo/x2) < 0. Hence IJC2/JC0| < 1. Furthermore |JCIJC2/JCO| < 1. Since
rgA,A(x) < 1. we must have \g*xo/xo(x)\ = |(^0 — ax2)/x0\ < 1. Since |a| < 1 and
\x2/xo\ < 1, we must have |a| = 1 and |X2/A:O| = 1. Since |JCIJC2/JCO | < 1, we also
have |*i/*oI < 1-

We have g*xi = x{ + 2ax0 — bx2. From |(x0 - ax2)/x0\ < 1 and \xo/x2\ = 1 it
follows that \2ax0 — bx2/x0\ = 1. Furthermore \g*Xi/xo(x)\ = \g*x2/x0(x)\ = 1 and
\g*xo/xo(x)\ < 1. So IgA(x) is the vertex 0. This contradicts our assumption that
A n I(x) = 0. Therefore IA(x) has to be a point.

Now let us assume that IA (x) consists of a single point. Our assumptions are such
that we must show that IA(x) = {0}, since this is clearly the vertex in a closest to
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I(x). We must furthermore show that 0 is the vertex in A closest to I(x). Since
rgA,A(x) < 1 and g*x2 = x2, we must have \g*xl/xl(x)\ < 1.

If \xl/xlx2{x)\ < 1, then \b\ = 1 and \x2/xx{x)\ = 1. Hence IA(x) = {0}. Since
\b\ — 1, it is clear that 0 is the vertex in A closest to I(x).

If \xl/xxx2{x)\ = 1 then \g*xo/xo(x)\ < 1. Hence \xi/xo(x)\ = \x2/x0(x)\ = 1.
Again we conclude that IA(x) = {0}, and furthermore |a| = 1. Hence again 0 is the
vertex in A closest to / (JC). This concludes the proof of the proposition.

7. A pure affinoid covering of Ys

7.1. The description of / (x) given above, enables us to give a pure affinoid covering
of Ys. The affinoids used will be nice open affinoid subspaces of the affinoids
Y{p\, P2> °}A- The components of the reduction of Ys with respect to this pure
affinoid covering ^ will be in 1-1 correspondance with certain convex subsets of the
building.

DEFINITION 7.2. Let A c B be an apartment. Let H c B be the SU2(L) subbuild-
ing determined by A.

An As table polyhedron AA C A is the convex hull of two vertices of type 0
T(, r2 e A. We write A^ = [T1? T2]A.

Let AA = [z\, T2]A be an A-stable polyhedron and let vA(AA) denote the center
of AA. Then ^^(A^) is the unique point z e A such that dist(ri, z) = dist(r2, z).
Suppose vA(AA) e a e A. We call A = {Jg€p^nSu2(L) 8(&A) a stable polyhedron.
Here SU2(L) is the group acting on H c B. We write A = fa, r2]. Note that A c / / .

The stable polyhedron A is uniquely determined by t\ and r2. If we take another
apartment A' B ru r2, the corresponding SU2(L) sub-building // ' C B contains A,
that is, A C // n H'.

The center of A is denoted by vB(A).
We say A determines A if A = fa, r2] with r, e A. Note that vB(A) e A if A

determines A.

DEFINITION 7.3. Forg e SU3(L) we put Y{g(f>i), g(pi), g(a)}gA :=g(Y{Pl, p2, a}A).
Now define:

Y{pu p2, a] := {x e Y{pu p2, a}A \ A determines

If p, = p2 =: p and a c p, then:

Y[p, p, a} = {xeYs\ I(x) C p, vB(x) e a) D Y'a.

If Pi 7̂  Pi then we write p, = [rj, x'2} with dist(T/, r,2) = dist(T2', T2
2) - 4. Then
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Y{pu Pi, <r) = {xeY'\ [r,\ T,2] C I(X) C [T2', r2
2], «„(*) € a}.

We denote the covering {Y{pu p2, a) | p,, a e 5} by ^ .

Note that the affinoid covering given here differs from the one given in [9]. There
are some mistakes in [9]: the covering given there is wrong. (Luckily [9] is not easily
obtained outside Japan.)

PROPOSITION 7.4. Let R : Y{px, p2, a}A -* R(Y{pu p2, a}A) denote the canonical
reduction map. Then there exists an open affine set V C R(Y{px, p2, o}A) such that

In particular Y{px, p2, a} is affinoid and its canonical reduction is V.

PROOF. We prove the proposition by giving an explicit description of Y{pu p2, a] c
Y{p\, Pi, O~}A as an open subset. For a convex subset A c B w e denote by P(A)~
the (not pointwise) stabiliser of A in 5f/3(L).

Firstly we treat the case px = p2. We take:

W:={xe Y{pu pua}A \ V(g 6 Pa) |«**,-/^(*)l = hi = 1, 2}

Firstly we will show that W = Y[px, p\,o). If x € Y[px, puo-}A then IA(x) C
I(x) or rgA,A(x) < 1. Hence \g*xlg*x2/xlx2(x)\ < 1, since \lgA(x)\ > \IA(x)\ or
rgA,A(x) < 1. If x e Y[pu pi, a) then |g*xig*^2/JCiJC2(̂ )l = 1 for all g e Pa, since
/gA(x) = g(IA(x)). Furthermore for each g e P , there are apartments A' and A" that
correspond to the coordinates g*xx, x2 and g*x2, xx, respectively. Therefore if x is in
Y{pu pi, CT}A then for all g e Pa \g*Xi/xt{x)\ < 1, i = 1, 2, and furthermore W =
Y{pu pi, cr}. Now it is clear that R(W) is an open affine subset of R(Y[pu Pi,cr}A).
Clearly W = R~l(R(W)), so the statement is true if pi = p2.

Suppose pi / p2. As before we write p, = [TJ, T^] with dist(r1
1, r,2) + 4 =

dist(T2', x\). The set of extremal vertices of the stable polyhedron [r/, T2] will be
denoted by V := [V\ • • • Vs}. Let A, c H denote an apartment containing Vj. Now
the proof is similar to in the case pi = p2 using the following subsets of Y{px, p2, a}A:

Zo := Y{pup2,(i}A

Z, := {x e Zo | UH(A:) = vA(x)}

= {xeZ0\ V(g ePan SU2(L)) |***,/*,(*)| = 1, i = 1, 2}

Z2 := {JC e ZL | V(//' D [T2', r
2])

2 , r ]

= {X € Z, | V(g 6 P(tT2', I
2])" n />„) |g*X,/x,(x)| = 1, i = 0 , 1,2}

Z3 := ( ^ Z 2 | I(x) = IH(x)}

= {x£Z2\ V(V € r)V(g G Pv)gA; n H = {V} implies |g*xlg^2A0
2U)| = 1}
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Now/?(Z3) c R(Z2) C /?(Z,) c R(Z0). Furthermore /?(Z,) c /?(Z,_,), J = 1, 2, 3
is an open and affine subset and R~l(R(Zt)) = Z,. This proves the proposition.

THEOREM 7.5. (1) [j^.aeB Y ^ ' /°2, <?} = Y>.
(2) The covering tf := {Y[pu p2, o] I Pi» P2, o e /?} is pure.
(3) 77ie reduction ofYs with respect to the covering <£ consists of proper components.
(4) 77ze components of the reduction are in 1-1 correspondance with the stable

polyhedra.

PROOF. The first statement is evident from the construction. The second statement
follows from Proposition 7.4 and the fact that the covering ^A is pure (Proposition
3.2(3)). Statement (3) follows from statement (1) as in [4, proof of 3.6 part 5]. The
last statement follows from Propositions 3.2(5) and 7.4.

8. The reduction of Ys

8.1. In this section we describe the reduction of Ys. We firstly determine the
reduction of YS

A with respect to the pure affinoid covering <£A. Then we use the
stabilisers of the components of the reduction to determine the reduction of Ys with
respect to c€.

DEFINITION 8.2. For a stable polyhedron A c B such that the apartment A c B
determines A we define:

Y(A)A:={xeYs
A\IA(x) = AnA};

Y(A):={x<=Ys\I(x) = A};

P(Ay := {g e SU3(L) \ g(A) = A}.

The canonical reduction of Y(A)A, Y(A) etcetera will be denoted by Y(A)A, Y(A),
and so on.

Note that if A n A is the convex hull of the vertices r, and r2, then Y(A)A =
Y{xi,z2,a}A. Here the chamber a is choosen in such a way that vA(AC\ A) e a.

The following proposition is rather obvious and we omit the proof.

PROPOSITION 8.3. (1) Y(A)A C Y{px, p2, a}A ifand only ifAn p, ^ 0, Anp 2 ^
0 vB(A) 6 o and A n A C convex hull of{pu p2}.

(2) Y(A)A = HY{pu p2, a}A with A D p, ^ 0, A D p2 ^ 0 and vB(A) € a and
A fl A c convex hull of{p\, p2}.
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(3)

(4) K(A) = nge/.(A)- 8(Y(A)A) =
(5) y(A) = {x e Y(A)A | \g*x,/x,(x)\ = 1, i =
(6) F(A) c Y(A)A is open and affine and R~\Y {A)) = Y(A), where R :

Y(A)A is the canonical reduction map.

C Y{pu p2, a}A implies Y(A)A is in the component of Y{p{, p2,a}A

corresponding to AA. Furthermore Y(A)A is open and affine in Y{px, p2, o}A

Vg €

DEFINITION 8.4. Before describing the reduction of YS
A we need some definitions.

Let A be the standard apartment and let the vertices correspond with the integers as
before.

For an A-stable polyhedron AA = [2n, 2m ]A, the centre vA(A) and its length \AA\
are given by vA(AA) = (n + m), | AA\ = \2m - 2n\.

We put a simplicial structure on the set of A-stable polyhedra. The collection of
simplices will be denoted by 0s

A. The elements of g?A are the non-empty subsets of
the following sets:

C A 2 , C A > A ( A ^ A\ = IA\\ + 2 = |A' I +4}

Note that the triangles in the picture of *£& correspond to the maximal simplices.

PROPOSITION 8.5. Let AA = [2i, 2j]A with i < j . The component X(AA) of the
reduction of YA corresponding to AA is a IP? with a point blown up for the A'A such
that {AA,A'A} e 0?Aand\AA\ = \A'A\ + 4 or \A'A\ = | A A | - 2 .

The intersections with the other components of the reduction are:

(1) X(AA)nX(A'A) is an exceptional line in X(AA) if:

{AA,A'A}e&A and \A'A\ = \AA\ + 4 or \A'A\ = \AA\ - 2;

(2) X(AA) n X(A'A) is an ordinary line in X(AA) if:

», A'} € @>A and -4 or

(3) X(AA) n X(A'A) n X(A';) is a point if and only if{AA, A'A, A'A] e &>A.
(4) X(AA) n X(A'A) = 0 if{AA, A'A,} ^ &A.

PROOF. We firstly treat the case AA = [0,0]A. One calculates X(AA) using torus
embeddings (see [6]). The picture of the covering ^A more or less directly gives
(X(AA).

The first picture (see below) shows that the affines of the reduction glue together
in a P| , corresponding to Proj(L[io> *i, ̂ 2])- The actual picture at AA = [0, 0],, is a
subdivision of this picture. This extra line gives a blow up of a point. In our case the
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point is given by X\/x0 = x2/x0 = 0. Hence we find X([0, 0]A) is a P? with a point
blown up.

L[*i si]
X2 * 2

The line connecting [0, 0]A with [—2, 2]4 in the picture (see 3.1) gives the in-
tersection X([0, 0]A) n X([-2, 2]A). It corresponds to the exceptional line in P| .
Furthermore X([0, 2]A) n X([0, 0]A) and X([-2, 0]*) nX([0, 0]A) are ordinary lines
in Jf([O, <)]„).

The intersection X([0, 0]A) n X(AA) D X(A'A) is a point if there exists an affmoid
F in ^A such that [0, 0],4, AA and A'A correspond to vertices of F in the picture.
Hence {[0,0], AA, A'A] e 3»A.

If {[0, O],,, AA} g 2?A, then there does not exist an affmoid in the covering %
having a component corresponding to both A-stable polyhedra. Hence the intersection
of the corresponding components is empty.

From this one concludes that the proposition is true for A^ = [0, 0],4. For the other
AA that are vertices [2n, 2n]A the situation is exactly the same.

If AA is not a vertex of A then the picture around the component AA has two more
lines in it. Hence the component X(AA) is a P | with (1, 0, 0), (0, 1,0) and (0, 0, 1)
blown up. Now one proves the proposition in a similar vein as for AA = [0, 0]^. This
concludes the proof.

DEFINITION 8.6. We take ^ := {Y{pu p2, o) | pu p2,o e A] and we denote by
X(A)A the component of the reduction with respect to this covering belonging to
AA. Here A is a stable polyhedron such that A determines A. Hence A is uniquely
determined by AA = A n A.

Since Y{p{, p2, a} c Y{pt, p2, a}A is open and affine, X(A),i C X(A D A) is a
Zariski open subset.

The action of g e P(A)~ on Y(A) induces an action g on the reduction Y(A) of
Y(A). We put P(A)~ := {g I g e P(A)~}. The action of P(A)~ on Y(A) can be
extended to the component X(A). Here X(A) is the component corresponding to A
of the reduction of Ys with respect to <€. Clearly Y(A) c X(A). Furthermore one
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has X(A)A D Y(A). In fact one has:

PROPOSITION 8.7. X(A) =

PROOF. This is clear since P(A)~ acts transitively on the apartments A such that
A determines A, that is, | A fl A\ is maximal.

PROPOSITION 8.8. Let A be a stable polyhedron and let A determine A. Then
X(A)A C X (AC\ A) is the open subset obtained by omitting the images of the lines
g*Xj = 0, i = 1, 2, g e P(A)~, that do not coincide with the images of X\ = 0 or
x2 = 0inX(AnA).

PROOF. This follows more or less directly from the description of Y[px, Pi,o) c
Y{p\, Pi,a}A given in the proof of Proposition 7.4.

DEFINITION 8.9. For a stable polyhedron A we put | A| = max |A n A\. Further-

more we put a simplicial structure on the set of stable polyhedra. The collection £?

of simplices has as its elements the non-empty subsets of the sets:

{A,, A2, A3 | 3(A C B)|A,-nA| = |A,| and {Ax D A, A2 (1 A, A3 n A} 6 &A\.

PROPOSITION 8.10. Let A determine the stable polyhedron A.IfA = [2i, 2j] with
i < j then the component of the reduction X(A) belonging to A consists of a P |
with a point blown up for each A' such that {A, A'} € S? and |A'| = |A| + 4 or
|A'| = |A|-2.

The intersections with other components are as follows:

(1) X(A)f)X(A')isan exceptional line in X(A) if:

{ A , A ' } € ^ and | A ' | = | A | + 4 or | A | - 2 .

(2) X(A) n X(A') is an ordinary line in X(A) if:

{A,A'}e&> and |A ' | = | A | - 4 or |A' | = | A | + 2 .

(3) X (A) <1X (A') DX (A") is a point if and only if {A, A', A"} e 9.
(4)

PROOF. This follows directly from the previous propositions using the fact that
P(A)~ acts linearly on the P | .
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REMARK 8.11. One can embed SU3(L) into SL3(L). The maximal AT-split torus
S(K) = L* of SUj(L) is contained in a unique maximal /.-split torus T c SL3(L),
which again acts diagonally on ¥2

L with respect to the coordinates XQ, X\, X2. Hence
S(K) determines a unique apartment A in the building B3 of SL3(L).

Let J(f := Ug€Sf/j(D 8 ' A C 63. Then Jf is a convex subcomplex of B3. The
vertices of Jf? correspond 1-1 with the Si/3 (L)-images of [< eo,n

ne\,nme2 >],
n,m e Z. The maximal simplices are triangles. The three equivalence classes [Nj],
i = 1, 2, 3, correspond to a maximal simplex, if there exist representatives Nt e [iV,-]
such that Ni D N2D N3 D TtNx.

Let Yj? := ( z e f | V(g g SU3(L)) g*xQ(z) # 0}. Since J f C B3 is convex,
there exists a formal scheme for Yj? whose closed fibre consists of a proper component
for each vertex of Jtf (See [5]). These components are of the form P2

L with some
points blown up.

One can associate to each stable polyhedron A a unique equivalence class [MA] of
L° modules as follows. Suppose A determines A. We can find an x e Ys such that
I(x) = A. Then n, := v(Xj/x0) € 1 for i = 1, 2. The integers rc, only depend on A.
Then we define MA :=< eo> ^"'^i, Tt"2e2 >. By construction nt +n2 > 0. This gives
a unique equivalence class [MA] for A. The stabilizer of MA in 5[/3(Z.) is the group
P(A)~. One easily sees that our simplicial structure &> on the set of stable polyhedra
corresponds with the simplicial structure of the modules [MA] coming from Jf.

So we can embed the set of stable polyhedra simplicially into the building fi3 of
SL3(L). One now easily concludes that the affinoids Y{p\, p2, a], px ^ p2, in the
covering ^ of Ys that correspond to triangles in the picture (See 3.1) are exactly
the same as the affinoids that go with the corresponding chamber in the 5L3(L)-
building in the affinoid covering of Yj?. Moreover the component of the reduction
of Ys corresponding to the stable polyhedron A is the same as the component of the
reduction of Yj? associated to MA, if A is not a vertex of type 0 in B. The components
do differ if A is a vertex.

REMARK 8.12. The component of the reduction of Ys belonging to A is a P2
L with

some points blown up. The number of points blown up is as follows.
If L/K is unramified the number of points blown up is:

q2{q2 - q + 1) if A is a vertex.

q4 + q + 1 if A is not a vertex.

If LjK is ramified then the numbers are as follows:
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q(q + l ) /2 if A is a vertex.

q2 + q + 1 if A is not a vertex and vB(A) is a vertex of type 1.

q2 + 2 if A is not a vertex and uB(A) is a vertex of type 0.

For the convenience of the reader we give in the table below the number of simplices
{A, A'} e &. We assume |A| = |A n A\. Each P(A)~ orbit is determined by the
difference | A'| — |A|. We give the number of elements in the P(A)~ orbit. They
differ if L/K is ramified or not.

A
[2i, 2i] = [2i]

[2i, 2i + 2]

[2i, lj], i < j
i ^ j mod 2

y ^ i + 1

[2i, lj], i < j
i = j mod 2

|A ' | - |A |
2
4

- 2
2
4

- 4
- 2
2
4

- 4
- 2
2
4

L/tf unramified

<73 + l
q2(q2~q + \)

9 + 1
q\q + 1)

qA

1
9 + 1

92(9 + 1)
q4

1
9 + 1

92(9 + 1)
94

L/K ramified
9 + 1

qiq + D/2
9 + 1

9(9 + D
92

1
9 + 1

9(9 + D
92

1

2

29

92

8.13. The quotient Ys/ F. Let F c 5f/3(L) be a torsion-free discrete co-compact
subgroup. The quotient Ys/V is a separated rigid analytic space. Since F has
infinitely many orbits on the components of the reduction of Ys, the quotient is not
proper. Moreover I would guess that the quotient itself cannot be compactified. To
explain this, consider an easier example.

Let F be the subgroup SL2 of 5f/3 that preserves the quadratic form g(x) =
+ XQ. We also let F act diagonally on P
pi x P" — • P2 given by: 1r(y,z) = (

0 x P^o. One has an F-equivariant map
(yiz2 + y2Zi), lyxzi, 2y2z2). The map f

is 2:1 and ramifies along g(x) — 0. We will also denote \}r <8> K by i}/.
Let S(K) C F(K) c SU3(L) be a maximal AT-split torus. Let A C B be the

apartment belonging to S. We put Y'F := DgtFw 8(Y1) and Y°F
S := n , e F ( j r ) ^(>T)-

We also define i™ := y^J - { g ( ( l , 0,0)) |g e F(AT)}, where (1,0,0) is the point fixed
by S. Let f2( := IP1 <2> AT — Pl(K) be Drinfeld's symmetric space. One easily proves
the following:
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(1) f-i(YJF) = Q, xfl, .
(2) \lr-l(Y'F') = (Pl

Kxal)U(QlxPl
K).

(3) ^(Pjf x Oi) = ?"•

Let FF c F(/f) be a discrete co-compact subgroup. Then (Pl
K x Sli)/VF is a

projective variety, whereas YF/ FF is a separated non-proper variety. The restriction
of the map \jr to iJ/~l(YF

s) is a finite rigid analytic map. Since \j/~\Ys
F)/ TF is not

separated, the same is true of Y"/rF. So it appears very difficult (impossible?)
to compactify the quotient YF/TF. However i(r~l(YF)/rF is an open subspace of

Let/,r(jr) := {z € flf|V(A c BFAA B Z)Z e IA(x)}, where BF := U ^ K , ^ C
Sis the building of F (K). Let J ^ := P^ x ft,-{(y, z) e Q , x f i | | / W r = 7(z)P.},
where /(—V is as in 5.2. The map (y, z) —> (^(y, z), /(z)p') identifies 2fF with
the set of pairs (x, p) with x e F" such that | / F (JC)| > 0 and p an extremal point of
IF(x). So J y can be constructed from Y$s.

The case of Ys/ F seems to be similar. One takes Yss := Yss - {g((l,0, 0))\g e
Sf/3(L)}. One defines a space J^ as consisting of the pairs (x, p) with x € ? " and
/(*) not a point and p an extremal point of / (x). Now it is hoped that 3f/ F can be
compactified (instead of Ys/ T).
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