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Abstract
In insurance risk theory, dividend and aggregate claim amount are of great research interest as they
represent the insurance company’s payments to its shareholders and policyholders, respectively.
Since the analyses of these two quantities are performed separately in the literature, the companion
paper by Cheung et al. generalised the Gerber–Shiu expected discounted penalty function by further
incorporating the moments of the aggregate discounted claims until ruin and the discounted
dividends until ruin. While Cheung et al. considered the compound Poisson model with a dividend
barrier in which ruin occurs almost surely, the present paper looks at this generalised Gerber–Shiu
function under a threshold dividend strategy where the insurer has a positive survival probability.
Because the Gerber–Shiu function is only defined for sample paths leading to ruin, we will
additionally study the joint moments of the aggregate discounted claims and the discounted divi-
dends without ruin occurring. Some explicit formulas are derived when the individual claim dis-
tribution follows a combination of exponentials. Numerical illustrations involving the correlation
between aggregate discounted claims and discounted dividends are given. For the case where ruin
occurs, we additionally compute the correlations between the time of ruin and the above two
quantities.
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1. Introduction

In the classical compound Poisson insurance risk model, the baseline (i.e., without dividends) surplus
process fUðtÞgt≥0 of the insurer is modelled as

UðtÞ ¼ u + ct� SðtÞ; t≥0 (1.1)

where u = U(0)≥0 is the initial surplus, c>0 the incoming premium rate per unit time, and
fSðtÞgt≥0 the aggregate claims process. Specifically, the aggregate claim amount until time t is given
by SðtÞ ¼

PNðtÞ
k¼1 Yk, where fNðtÞgt≥ 0 is a Poisson process with rate λ>0, and fYkg1k¼1 a sequence of

independent and identically distributed positive continuous random variables representing the
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individual claim amounts. Moreover, it is assumed that fNðtÞgt≥0 and fYkg1k¼ 1 are independent.
For later use, the common probability density function of the random variables fYkg1k¼ 1 is denoted
by p(·) and its Laplace transform is ~pðsÞ ¼

Ð1
0 e� sypðyÞdy.

The seminal paper by de Finetti (1957) suggested that the insurer should redistribute some of its
surplus to its shareholders, leading to extensive study of dividend strategies in various insurance risk
models (see e.g., Albrecher & Thonhauser, 2009; Avanzi, 2009 for reviews). The most commonly
studied dividend strategy in the literature is the barrier strategy (e.g., Gerber, 1979) in which any
excess of the surplus over a fixed barrier is immediately paid to the shareholders as dividends.
Although such a strategy is optimal as far as the maximisation of the expected discounted dividends
until ruin is concerned when p(·) is completely monotone (e.g., Loeffen, 2008, theorem 3), it results
in an ultimate ruin probability of one which is practically undesirable. In this paper, we shall impose
a threshold dividend strategy (e.g., Gerber & Shiu, 2006; Lin & Pavlova, 2006) to the surplus
process (1.1), so that part of the incoming premium rate is paid as dividends whenever the insurer’s
surplus exceeds a fixed threshold level b>0. Denoting the dividend rate by α> 0 and the premium
rate by c1 = c, the net premium rate is c2 = c1 − α when the surplus is above b. Therefore, the
modified risk process fUbðtÞgt≥0 under the above threshold strategy follows the dynamics:

dUbðtÞ ¼
c1 dt� dSðtÞ; UbðtÞ< b

c2 dt� dSðtÞ; UbðtÞ ≥ b

(

and the initial surplus is given by u ¼ Ubð0Þ ≥ 0. The time of ruin of fUbðtÞgt ≥ 0 is defined to be
τb ¼ infft ≥ 0 : UbðtÞ< 0g with the convention that τb ¼ inf ; ¼ 1 if UbðtÞ≥0 for all t≥0. Then,
the ruin probability is given by ψðu; bÞ ¼ Prfτb <1jUbð0Þ ¼ ug. The positive security loading
condition c2> λE[Y1] is assumed to ensure that ψðu; bÞ< 1 for all u≥0 (e.g., Kyprianou, 2013,
corollary 8.5). Note that D(t) = U(t) −Ub(t) is the total dividends paid until time t. An important
quantity of interest is the total discounted dividends until ruin, as it represents the value of firm in
corporate finance. In the present context, it is defined by

DδðτbÞ ¼
ðτb
0
e�δsdDðsÞ ¼ α

ðτb
0
e�δs1fUbðsÞ ≥ bg ds (1.2)

where δ>0 is the force of interest and 1A the indicator function of the event A. When each claim
amount Yk is exponentially distributed, Gerber & Shiu (2006, section 9) showed that the threshold
strategy is optimal in maximising the expected discounted dividends until ruin for restricted dividend
rate. Given a threshold strategy, Dickson & Drekic (2006) analysed the optimal pair of threshold
level and dividend rate that maximises the expectation of DδðτbÞ under a ruin probability constraint,
whereas Cheung et al. (2008) derived the higher moments of DδðτbÞ and computed the optimal
threshold minimising the coefficient of variation of DδðτbÞ.

Apart from DδðτbÞ, which is the total discounted payment made by the insurance company to its
shareholders, another quantity of interest is the aggregate discounted claim amount payable to the
policyholders until ruin, namely

Ð τb
0 e�δtdSðtÞ, where δ>0 is the force of interest. More generally, one

may consider the aggregate discounted claim costs until ruin defined by

ZδðτbÞ ¼
XNðτbÞ

k¼ 1

e�δTk f ðYkÞ (1.3)

where Tk is the time of the kth claim (which is the kth arrival time of the Poisson process fNðtÞgt ≥ 0),
and f(·) is a non-negative “cost function” applied to each claim. Clearly, if f(y) = y then ZδðτbÞ
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becomes
PNðτbÞ

k¼1 e�δTkYk ¼
Ð τb
0 e�δtdSðtÞ. We remark that the aggregate discounted claim amount here

is different from the one considered by e.g. Taylor (1979), Willmot (1989), Léveillé & Garrido
(2001), and Woo & Cheung (2013), which is concerned with the aggregate until a fixed time
t instead of the ruin time. The quantity ZδðτbÞ in (1.3) has gained some attention in recent years
(in models without dividends, i.e., α = 0). For example, the expectation of ZδðτbÞ was studied by
Cai et al. (2009, section 6) and Feng (2009a, section 4.2, 2009b, section 5.2) in the compound
Poisson and phase-type renewal risk models, whereas Cheung & Feng (2013) analysed the higher
moments of ZδðτbÞ in a Markovian arrival process.

In addition to the discounted dividends, the Gerber–Shiu expected discounted penalty function has
also been widely studied in insurance risk theory since the seminal paper by Gerber & Shiu (1998)
was published. In the present model, it is defined by

ϕδðu; bÞ ¼ E½e�δτbwðUbðτ�b Þ; jUbðτbÞjÞ1fτb <1gjUbð0Þ ¼ u�; u ≥ 0 (1.4)

where δ≥0 can be regarded as the force of interest or the Laplace transform argument with respect
to the time of ruin τb, and w(·, ·) is a non-negative “penalty” as a function of the surplus immediately
before ruin Ubðτ�b Þ and the deficit at ruin jUbðτbÞj. Typically, w(·, ·) is assumed to satisfy some mild
integrability conditions. While the Gerber–Shiu function (1.4) was studied by Lin & Pavlova (2006),
some related results on the corresponding discounted densities were given by Zhou (2004, section 4).
Interested readers are referred to e.g. Albrecher et al. (2007, section 2), Badescu et al. (2007a), Zhu
& Yang (2008), Lu & Li (2009), and Kyprianou & Loeffen (2010) for the analysis of the discounted
dividends and the Gerber–Shiu function in more general processes such as the
generalised Erlang(n) renewal model, risk model with Markovian claim arrivals, and the Lévy insurance
risk process. We also remark that a more general multi-threshold dividend strategy was also considered
by e.g. Albrecher & Hartinger (2007), Badescu et al. (2007b), and Lin & Sendova (2008).

In almost all works in the literature, the analyses of the discounted dividends (1.2), the aggregate
discounted claim costs (1.3) and (the random variables in) the Gerber–Shiu function (1.4)
were performed separately. Therefore, Cheung et al. (2015) proposed an extended version of the
Gerber–Shiu function defined as

ϕδ1 ;δ2 ;δ3;n;mðu; bÞ ¼ ϕδ123;n;mðu; bÞ

¼ E½e�δ1τbDn
δ2
ðτbÞZm

δ3
ðτbÞwðUbðτ�b Þ;jUbðτbÞjÞ1fτb <1g jUbð0Þ ¼ u�; u ≥ 0 ð1:5Þ

where n;m 2 N (with N being the set of non-negative integers) are the orders of moments of Dδ2ðτbÞ
and Zδ3ðτbÞ. It is assumed that the cost function f(·) satisfies some mild integrability conditions
(see Lemmas 2 and 3). Moreover, we assume δ1≥0, while δ2, δ3>0 are possibly different forces of
interest used to discount dividends and claims for the shareholders and policyholders, respectively.
Note that the indicator function 1fτb <1g does not appear in Cheung et al.’s (2015) definition since
they considered a dividend barrier strategy for which ruin occurs almost surely (a.s.). For notational
convenience, we shall use the abbreviation ϕδ123 ;n;mðu; bÞ for ϕδ1;δ2;δ3;n;mðu; bÞ when it does not cause
any confusion. Obviously, if n = m = 0 then ϕδ123 ;0;0ðu; bÞ ¼ ϕδ1 ðu; bÞ reduces to the classical
Gerber–Shiu function defined in (1.4). Under a compound Poisson risk model with a dividend
barrier, Cheung et al. (2015) applied ϕδ123 ;n;mðu; bÞ to find various covariance measures between
ruin-related quantities such as the discounted dividends until ruin and the aggregate discounted
claims until ruin. Through some numerical examples, they demonstrated that the covariance between
the above two random variables may take positive or negative value and gave some interpretations
as well. The motivation for calculating the above covariance (or the resulting correlation) is
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as follows. Because the payments to the policyholders (claims) and the shareholders (dividends) both
come from the same source, namely the insurer’s surplus, it is interesting to see whether the
discounted dividends and the aggregate discounted claims tend to move in the same or opposite
direction. A high positive correlation indicates that the needs of the two groups could indeed be
satisfied at the same time, but a negative correlation may suggest conflicting interests between the
two groups. We remark that Gerber–Shiu-type functions resembling (1.5) were also introduced and
analysed by Cheung (2013) and Cheung & Woo (2016) in the absence of dividends. While the
former contribution considered (1.5) where n = 0, δ1 = kδ3 for some k 2 N and the penalty w only
depends on the deficit in renewal risk models with general interclaim times and exponential claims,
the latter looked at (1.5), where n = 0 and w further depends on the surplus immediately after the
second last claim before ruin in the dependent Sparre Andersen risk model. The latter work was also
extended to a discrete time framework by Woo & Liu (2014).

It is instructive to note that the Gerber–Shiu function (1.5) only takes into account the sample
paths of fUbðtÞgt ≥ 0 for which ruin occurs. Under the loading condition c2> λE[Y1], the process
fUbðtÞgt ≥ 0 has a positive survival probability. For these sample paths where fUbðtÞgt ≥ 0 survives
forever (i.e., τb ¼ 1), the discounted dividends Dδ2 ðτbÞ and the aggregate discounted claim costs
Zδ3ðτbÞ are still defined although Ubðτ�b Þ and jUbðτbÞj are not. Therefore, we will also analyse the
joint moments of Dδ2ðτbÞ and Zδ3ðτbÞ without ruin occurring via

φδ2 ;δ3;n;mðu; bÞ ¼ φδ23;n;mðu; bÞ ¼ E½Dn
δ2
ðτbÞZm

δ3
ðτbÞ1fτb ¼1gjUbð0Þ ¼ u�; u ≥ 0 (1.6)

where n;m 2 N and δ2, δ3> 0. Note that the usual joint moments for all sample paths can readily be
obtained as

E½Dn
δ2
ðτbÞZm

δ3
ðτbÞjUbð0Þ ¼ u� ¼ ϕδ123;n;mðu; bÞjδ1 ¼ 0;w� 1 +φδ23;n;mðu; bÞ (1.7)

This paper is organised as follows. In section 2, the integro-differential equations (IDEs) for
ϕδ123 ;n;mðu; bÞ and φδ23;n;mðu; bÞ as well as the corresponding continuity conditions and limiting
behaviours as u→∞ are given. Under the assumption that each individual claim is distributed as a
combination of exponentials, section 3 provides some explicit expressions for ϕδ123;n;mðu; bÞ and
φδ23;n;mðu; bÞ when f(y) = y and w(x,y) depends on the deficit argument y but not x. Because the
derivation of the IDEs and the procedure towards the exact solutions are quite standard but require
tedious and careful calculations, only the main results are stated in sections 2 and 3 with the details
of the proofs provided in the Appendix. Section 4 is concerned with some numerical illustrations in
which we compute the correlation between the discounted dividends and the aggregate discounted
claims separately for the cases of ruin and survival. For the case where ruin occurs, the correlations
between the time of ruin and the above two quantities are also given. Probabilistic interpretations
follow as well. Section 5 ends the paper with some concluding remarks.

2. General Results

Due to the presence of the dividend threshold b, the IDEs in u satisfied by ϕδ123 ;n;mðu; bÞ are different
depending on whether 0≤u<b or u≥b (and hence the solution forms will also be different as in section
3). Therefore, we shall denote ϕδ123 ;n;mðu; bÞ by ϕL;δ123;n;mðu; bÞ for 0≤u<b and ϕU;δ123;n;mðu; bÞ for
u≥b, where “L” and “U” stand for “Lower” and “Upper” layers, respectively. Furthermore, we shall
use ϕ0

δ123;n;mðu; bÞ ¼ ðd=duÞϕδ123;n;mðu; bÞ to denote the derivative of ϕδ123;n;mðu; bÞ with respect to the
first argument u. Similar notations will be applied to φδ23;n;mðu; bÞ and other related functions as well.
The proofs of the theorems and lemmas in this section are given in the Appendix.
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2.1. IDEs and continuity condition for ϕδ123;n;mðu;bÞ when n ¼ 0

First, we consider ϕδ123 ;0;mðu; bÞ (i.e., n = 0) so that the dividend component Dδ2ðτbÞ does not appear
in the definition (1.5). For notational convenience, we write

ϕδ13;mðu; bÞ ¼ ϕδ123 ;0;mðu; bÞ ¼ E½e�δ1τbZm
δ3
ðτbÞwðUbðτ�b Þ;jUbðτbÞjÞ1fτb <1gjUbð0Þ ¼ u�; u ≥ 0 (2.1)

The IDEs and continuity condition for ϕδ13;mðu; bÞ are stated in the following theorem, where
ϕδ13;mðu; bÞ ¼ ϕL;δ13;mðu; bÞ for 0≤ u< b and ϕδ13;mðu; bÞ ¼ ϕU;δ13;mðu; bÞ for u≥ b according to our
afore-mentioned convention.

Theorem 1 For m 2 N, the Gerber–Shiu function ϕδ13;mðu; bÞ in (2.1) satisfies the IDEs, for 0< u< b

c1ϕ0
L;δ13;mðu; bÞ� ðλ + δ1 +mδ3ÞϕL;δ13;mðu; bÞ + λ

Xm
i¼0

m

i

 !ðu
0
f m� iðyÞϕL;δ13;iðu� y; bÞpðyÞdy

+ λ
ð1
u
f mðyÞwðu; y� uÞpðyÞdy ¼ 0 ð2:2Þ

and for u> b

c2ϕ0
U;δ13;mðu; bÞ� ðλ + δ1 +mδ3ÞϕU;δ13;mðu; bÞ + λ

Xm
i¼0

m

i

 !ðu� b

0
f m� iðyÞϕU;δ13;iðu� y; bÞpðyÞdy

+ λ
Xm
i¼0

m

i

 !ðu
u� b

f m� iðyÞϕL;δ13;iðu� y; bÞpðyÞdy + λ
ð1
u
f mðyÞwðu; y� uÞpðyÞdy ¼ 0 ð2:3Þ

In addition, ϕδ13;mðu; bÞ is continuous at u = b, i.e.

ϕL;δ13;mðb
� ; bÞ ¼ ϕU;δ13;mðb+ ; bÞ (2.4)

□

Remark 1 As ϕδ13;mðu; bÞ reduces to the classical Gerber–Shiu function ϕδ1 ðu; bÞ when m = 0, it is
noted that the results in Lin & Pavlova (2006, theorem 3.1) can be retrieved from the above theorem
by putting m = 0. Note also that the determination of ϕδ13;mðu; bÞ is recursive in m, with the starting
point given by ϕδ1ðu; bÞ. Assuming that the lower-order Gerber–Shiu functions ϕδ13;ið�; bÞ for i = 0,
1,… , m− 1 are known, it is observed that the IDE (2.3) involves both ϕL;δ13;mð�; bÞ in the lower layer
and ϕU;δ13;mð�; bÞ in the upper layer as unknown functions, while (2.2) only involves ϕL;δ13;mð�; bÞ.
Therefore, the typical procedure is to first utilise (2.2) to determine the solution form of ϕL;δ13;mð�; bÞ,
and then attempt to find ϕU;δ13;mð�; bÞ in (2.3) by treating ϕL;δ13;mð�; bÞ as known (see the proofs of
theorems in section 3). □

Remark 2 Having established the continuity of ϕδ13;ið�; bÞ for i 2 N in the proof of Theorem 1, we
observe from (2.2) that for each m 2 N the derivative ϕ0

L;δ13;mðu; bÞ is continuous in u in the layer
0<u<b if

Ð1
u f mðyÞwðu; y� uÞpðyÞ dy is continuous in u. A sufficient condition forÐ1

u f mðyÞwðu; y� uÞpðyÞdy to be continuous in u is that the penalty w(·, ·) is a continuous function.
For the same reason, ϕ0

U;δ13;mðu; bÞ is continuous in u for u> b under the same sufficient condition.
However, although ϕδ13;mðu; bÞ is continuous at u = b, the derivative ϕ0

δ13;mðu; bÞ is generally not
continuous at u = b. To see this, letting u→b− in (2.2) and u→ b+ in (2.3) (assumingÐ1
u f mðyÞwðu; y� uÞpðyÞdy is continuous at u = b) and comparing the two equations gives rise to

c1ϕ0
L;δ13;mðb

� ; bÞ ¼ c2ϕ0
U;δ13 ;mðb

+ ; bÞ
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which generalises the result at the end of section 3 in Lin & Pavlova (2006) (see also Gerber &
Shiu, 2006, equation (10.5)). Therefore, ϕ0

L;δ13;mðb
� ; bÞ≠ϕ0

U;δ13;mðb
+ ; bÞ unless c1 = c2 (or

equivalently α = 0). □

2.2. IDEs and continuity condition for ϕδ123;n;mðu; bÞ when n 2 N +

Next, we look at the Gerber–Shiu function ϕδ123;n;mðu; bÞ defined in (1.5) when n 2 N + and m 2 N

(where N+ is the set of positive integers). The following theorem gives the associated IDEs and
continuity condition.

Theorem 2 For n 2 N+ and m 2 N, the Gerber–Shiu function ϕδ123 ;n;mðu; bÞ in (1.5) satisfies the
IDEs, for 0< u< b

c1ϕ0
L;δ123 ;n;mðu; bÞ� ðλ + δ1 + nδ2 +mδ3ÞϕL;δ123 ;n;mðu; bÞ

+ λ
Xm
i¼ 0

m

i

 !ðu
0
f m� iðyÞϕL;δ123 ;n;iðu� y; bÞpðyÞ dy ¼ 0 ð2:5Þ

and for u>b

c2ϕ0
U;δ123;n;mðu; bÞ� ðλ + δ1 + nδ2 +mδ3ÞϕU;δ123 ;n;mðu; bÞ + αnϕU;δ123 ;n� 1;mðu; bÞ

+ λ
Xm
i¼0

m

i

 !ðu�b

0
f m� iðyÞϕU;δ123 ;n;iðu� y; bÞpðyÞdy

+ λ
Xm
i¼0

m

i

 !ðu
u�b

f m� iðyÞϕL;δ123 ;n;iðu� y; bÞpðyÞdy ¼ 0 ð2:6Þ

In addition, ϕδ123;n;mðu; bÞ is continuous at u = b, i.e.

ϕL;δ123;n;mðb
� ; bÞ ¼ ϕU;δ123 ;n;mðb

+ ; bÞ (2.7)

□

Remark 3 It is instructive to note from (2.5) and (2.6) that one requires a double recursion in both
n and m to determine ϕδ123;n;mðu; bÞ (see similar comments in Remark 1 concerning ϕδ13;mðu; bÞ).
Furthermore, in parallel to Remark 2 (assuming

Ð1
u f mðyÞwðu; y� uÞpðyÞdy is continuous at u = b)

it is clear that, for n 2 N+

c1ϕ0
L;δ123 ;n;mðb

� ; bÞ ¼ c2ϕ0
U;δ123 ;n;mðb

+ ; bÞ + αnϕU;δ123 ;n�1;mðb; bÞ

i.e. the derivative of ϕδ123;n;mðu; bÞ is not necessarily continuous at u = b. □

Remark 4 Note that the IDEs (2.2) and (2.5) for ϕδ123 ;n;mðu; bÞ in the lower layer are the same as
those in theorems 1 and 2 in Cheung et al. (2015) concerning the dividend barrier strategy. This is
because these IDEs are obtainable by considering an infinitesimal time interval, for which the
dynamics of the surplus process are identical as no dividend is payable in the lower layer regardless
of whether a barrier or a threshold strategy is implemented. Such an observation will allow us to
reuse some of the intermediate results in Cheung et al. (2015) in section 3. □
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2.3. IDEs and continuity condition for φδ23;n;mðu;bÞ
In the next theorem, the IDEs and continuity condition concerning φδ23;n;mðu; bÞ (i.e., without ruin
occurring) for n;m 2 N will be provided. Because the dividend value Dδ2ðτbÞ cannot be 0 on the set
fτb ¼ 1g, here we do not need to separate the analysis into the cases n = 0 or n 2 N+ (unlike the
Gerber–Shiu function ϕδ123 ;n;mðu; bÞ in the previous two subsections).

Theorem 3 For n;m 2 N, the joint moment φδ23;n;mðu; bÞ in (1.6) satisfies the IDEs, for 0<u<b

c1φ′L;δ23;n;mðu; bÞ� ðλ + nδ2 +mδ3ÞφL;δ23;n;mðu; bÞ + λ
Xm
i¼ 0

m

i

 !ðu
0
f m� iðyÞφL;δ23;n;iðu� y; bÞpðyÞdy ¼ 0

(2.8)

and for u> b

c2φ0
U;δ23;n;mðu; bÞ� ðλ + nδ2 +mδ3ÞφU;δ23;n;mðu; bÞ + αnφU;δ23;n�1;mðu; bÞ

+ λ
Xm
i¼0

m

i

 !ðu� b

0
f m� iðyÞφU;δ23;n;iðu� y; bÞpðyÞdy

+ λ
Xm
i¼0

m

i

 !ðu
u� b

f m� iðyÞφL;δ23;n;iðu� y; bÞpðyÞdy ¼ 0 ð2:9Þ

In addition, φδ23;n;mðu; bÞ is continuous at u = b, i.e.

φL;δ23;n;mðb
� ; bÞ ¼ φU;δ23;n;mðb

+ ; bÞ (2.10)

It is understood that φU;δ23;n� 1;mðu; bÞ appearing in (2.9) is regarded as 0 when n = 0. □

Remark 5 For n 2 N+ and m 2 N, it is observed that the IDEs (2.5) and (2.6) in Theorem 2 satisfied
by ϕδ123 ;n;mðu; bÞjδ1 ¼ 0 in the case of ruin are identical to the IDEs (2.8) and (2.9) in Theorem 3 for
φδ23;n;mðu; bÞ concerning the case of survival. However, the full solutions to ϕδ123 ;n;mðu; bÞjδ1 ¼ 0 and
φδ23;n;mðu; bÞ are generally different due to different limiting conditions as u→∞ (which will be
discussed in the next subsection) and the fact that the lower-order moments appearing in the two sets
of IDEs are different. □

2.4. Limits of ϕδ123;n;mðu;bÞ and φδ23;n;mðu;bÞ as u ! 1
From Theorems 1 and 2, the Gerber–Shiu function ϕδ123;n;mðu; bÞ satisfies two different IDEs in the
lower and upper layers, and each IDE contains a derivative term. Therefore, the determination of the
full solution of ϕδ123 ;n;mðu; bÞ from the IDEs typically requires one more piece of information apart
from the continuity condition. Similar comments are applicable to φδ23;n;mðu; bÞ as well. In this
subsection, we shall consider the limits limu!1 ϕδ123 ;n;mðu; bÞ and limu!1 φδ23;n;mðu; bÞ. It is not our
objective here to discuss the existence and/or uniqueness of solution to the IDEs given the continuity
and limiting conditions in general, but we point out that these are sufficient to yield a unique solution
in section 3 when each claim is distributed as a combination of exponentials (see Remark 9).
Interested readers are referred to e.g. Mihálykó & Mihálykó (2011) where conditions for the
uniqueness of the solution to an integral equation satisfied by the classical Gerber–Shiu function are
analysed. Before providing the limits in Lemmas 2 and 3, we state the following lemma which is a
special case of Léveillé & Garrido (2001, corollary 2.1).
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Lemma 1 Define, for m 2 N and δ > 0

θδ;m ¼ E
X1
k¼1

e�δTk f ðYkÞ
 !m" #

(2.11)

Then, θδ,m can be computed recursively using, for m 2 N+

θδ;m ¼ λ

mδ

Xm�1

i¼ 0

m

i

 !
E½f m� iðY1Þ�θδ;i

with the starting value θδ,0 = 1. □

Remark 6 From Lemma 1, it is clear that θδ,1 is finite if E[f(Y1)] is finite. For θδ,2 to be finite, one
requires E[f2(Y1)] to be finite (which implies finiteness of E[f(Y1)] and hence θδ,1). Recursively, one
observes that θδ,m is finite if E[fm(Y1)] is finite. □

Next, we shall first state limu!1 φδ23;n;mðu; bÞ in the following lemma under some mild conditions,
and some intermediate results in the proof will be used to identify limu!1 ϕδ123;n;mðu; bÞ in the proof
of Lemma 2.

Lemma 2 For a given value of m 2 N, if θδ3 ;m defined via (2.11) is finite, then under the positive
security loading condition, the limit of φδ23;n;mðu; bÞ is finite and is given by, for n 2 N

lim
u!1

φδ23 ;n;mðu; bÞ ¼
α

δ2

� �n

θδ3 ;m (2.12)

□

Lemma 3 For a given value of m 2 N, if the penalty function w(·, ·) is bounded and θδ3;m defined via
(2.11) is finite, then under the positive security loading condition, the limit of ϕδ123;n;mðu; bÞ is given
by, for n 2 N

lim
u!1

ϕδ123 ;n;mðu; bÞ ¼ 0 (2.13)

□

3. Combination of Exponentials Claims

In this entire section, we assume that the distribution of each claim amount Yk follows a combination
of exponentials with density

pðyÞ ¼
Xr
k¼1

qkμke
�μky; y>0 (3.1)

where
Pr

k¼1 qk ¼ 1, and for k = 1, 2,… , r the parameters μk’s are positive and distinct whereas qk’s
are non-zero. The class of combinations of exponentials is known to be dense in the set of
distributions on (0,∞), and we refer interested readers to Dufresne (2007) for its fitting. Concerning
the quantity Zδ3 ðτbÞ defined via (1.3), we shall focus on its special case

PNðτbÞ
k¼1 e�δ3TkYk (for δ3>0),

which represents the aggregate discounted claims until ruin. Thus, it is assumed that f(y) = y
throughout this section. Since all the moments of Y1 are finite, the quantity θδ3;m computed via
Lemma 1 is also finite for every m 2 N according to Remark 6. In particular, the first two moments
of Y1 are given by E½Y1� ¼

Pr
k¼1 qk=μk and E½Y2

1 � ¼
Pr

k¼1 2qk=μ2k. Consequently, the random
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variable
PNðτbÞ

k¼1 e�δ3TkYk is integrable as
PNðτbÞ

k¼1 e�δ3TkYk ≤
P1

k¼1 e�δ3TkYk and
E½
P1

k¼1 e�δ3TkYk� ¼ θδ3;1 is finite, and hence
PNðτbÞ

k¼1 e�δ3TkYk is also integrable on the sets fτb <1g
and fτb ¼ 1g. Conditional on ruin occurring, we are interested in correlations involving any two of
the aggregate discounted claims until ruin

PNðτbÞ
k¼1 e�δ3TkYk, the discounted dividends until ruin

Dδ2ðτbÞ (for δ2>0), and the ruin time τb (see section 4). Although a penalty function of w ≡ 1 is
sufficient for our purposes, we shall assume a bounded penalty w(x,y) = w(y) that depends on the
deficit jUbðτbÞjbut not the surplus before ruin Ubðτ�b Þ, as this does not complicate our analysis. Note
that the limiting condition (2.13) is applicable under the above setting, so is the condition (2.12) as
far as the joint moments of the aggregate discounted claims and the discounted dividends are
concerned without ruin occurring.

The derivations of explicit expressions for ϕδ123 ;n;mðu; bÞ and φδ23;n;mðu; bÞ rely on the Lundberg’s
equation, for l = 1, 2 and n;m 2 N

cls�ðλ + δ1 + nδ2 +mδ3Þ + λ~pðsÞ ¼ 0 (3.2)

where ~pðsÞ ¼
Pr

k¼1 qkμk=ðμk + sÞ is the Laplace transform of Y1. Let fρn;m;jgr +1j¼1 and fκn;m;jgr +1j¼1 be
the r+ 1 roots of (3.2) when l = 1 and l = 2, respectively (i.e., the roots ρ’s correspond to the full
premium rate c1 = c, while κ’s belong to the net premium rate c2 = c− α). Each of these two sets of
roots are assumed to be distinct (see Remark 7). It is well known that (3.2) has a unique root with
non-negative real part (and it is a real root), while the other r roots have negative real parts. When
l = 2, we need to distinguish between these roots, and the non-negative root is denoted by κn;m;r +1.
(Note that κn;m;r + 1 is indeed positive except when δ1 = n = m = 0.) Also, ρn;m;j and κn;m;j are denoted
by ρ�n;m;j and κ�n;m;j, respectively, when δ1 = 0. We shall see that the solutions to ϕδ123 ;n;mðu; bÞ and
φδ23;n;mðu; bÞ admit the representations

ϕL;δ123;n;mðu; bÞ ¼
Xm
i¼ 0

Xr + 1
j¼1

An;m;i;jeρn;i;ju; 0≤ u≤ b (3.3)

ϕU;δ123 ;n;mðu; bÞ ¼
Xn
i¼ 0

Xm
j¼0

Xr
k¼1

A�
n;m;i;j;ke

κi;j;ku; u ≥ b (3.4)

φL;δ23;n;mðu; bÞ ¼
Xm
i¼ 0

Xr +1
j¼1

Cn;m;i;je
ρ�n;i;ju; 0≤ u≤b (3.5)

and

φU;δ23;n;mðu; bÞ ¼
Xn
i¼ 0

Xm
j¼0

Xr
k¼1

C�
n;m;i;j;ke

κ�i;j;ku +
α

δ2

� �n

θδ3;m; u ≥ b (3.6)

As it has been shown that ϕδ123 ;n;mðu; bÞ and φδ23;n;mðu; bÞ are continuous for u≥0, we shall use the
domain 0≤u≤b and u≥ b for the lower and upper layers, respectively, in the upcoming lemmas and
theorems.

Remark 7 In the unlikely case where there are multiple roots to the Lundberg’s equation, one or
more model parameters (such as λ or δ1) may be slightly modified such that the roots become distinct.
Consequently, one may approximate the ruin quantities of interest by the corresponding ones in a
model with distinct roots. For a detailed treatment of multiple Lundberg’s roots, we refer interested
readers to e.g. Ji & Zhang (2012). Nevertheless, from e.g. Gerber & Shiu (2006, equation (A.8)),
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a sufficient condition for the roots to be distinct is that all qk’s in the claim density (3.1) are positive
(so that p(·) is a proper mixture of exponentials). Another sufficient condition is that r = 2. See e.g.
equations (7.14) and (7.15) of Gerber et al. (2006) and figures 1 and 2 therein. Under either
condition, the roots are real. □

3.1. ϕδ123;n;mðu;bÞ and φδ23;n;mðu;bÞ when n ¼ m ¼ 0

When n = m = 0, ϕδ123 ;0;0ðu; bÞ ¼ ϕδ13;0ðu; bÞ ¼ ϕδ1ðu; bÞ is simply the classical Gerber–Shiu function
defined in (1.4). Its solution can be obtained from Gerber & Shiu (2006, appendix B) with minor
adjustments (as they considered w ≡ 1). Since this will be used as a starting point to compute higher
moments, the result is stated in the following lemma.

Lemma 4 The classical Gerber–Shiu function ϕδ1ðu; bÞ is given by

ϕδ1ðu; bÞ ¼ ϕL;δ1ðu; bÞ ¼
Xr +1
j¼1

A0;0;0;jeρ0;0;ju; 0≤u≤b (3.7)

and

ϕδ1ðu; bÞ ¼ ϕU;δ1ðu; bÞ ¼
Xr
j¼1

A�
0;0;0;0;je

κ0;0;ju; u ≥ b (3.8)

where fρ0;0;jgr +1j¼1 and fκ0;0;jgrj¼1 are Lundberg’s roots defined via (3.2). The coefficients fA0;0;0;jgr + 1j¼1

and fA�
0;0;0;0;jg

r
j¼1 satisfy the 2r+ 1 linear equations which consist of

Xr +1
j¼1

A0;0;0;j

μk + ρ0;0;j
¼ ~wðμkÞ; k ¼ 1; 2; ¼ ; r (3.9)

Xr +1
j¼1

A0;0;0;j

μk + ρ0;0;j
eρ0;0;jb ¼

Xr
j¼1

A�
0;0;0;0;j

μk + κ0;0;j
eκ0;0;jb; k ¼ 1; 2; ¼ ; r (3.10)

and

Xr +1
j¼1

A0;0;0;jeρ0;0;jb ¼
Xr
j¼1

A�
0;0;0;0;je

κ0;0;jb (3.11)

where ~wðsÞ ¼
Ð1
0 e�sywðyÞ dy is the Laplace transform of w(·). □

When n = m = 0, it is clear from the definition (1.6) that φδ23;0;0ðu; bÞ ¼ φðu; bÞ is the survival
probability (i.e., probability that ruin does not occur). Therefore, one has that
φðu; bÞ ¼ 1�ϕδ1ðu; bÞjδ1 ¼ 0;w� 1, where ϕδ1 ðu; bÞjδ1 ¼ 0;w�1 can be computed using Lemma 4. This
leads to the following lemma.

Lemma 5 The survival probability φðu; bÞ is given by

φðu; bÞ ¼ φLðu; bÞ ¼
Xr +1
j¼1

C0;0;0;je
ρ�0;0;ju; 0≤u≤b

and

φðu; bÞ ¼ φUðu; bÞ ¼
Xr
j¼1

C�
0;0;0;0;je

κ�0;0;ju + 1; u ≥ b (3.12)
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where fρ�0;0;jg
r +1
j¼ 1 and fκ�0;0;jg

r
j¼ 1 are Lundberg’s roots defined via (3.2). The coefficients fC0;0;0;jgr +1j¼1

and fC�
0;0;0;0;jg

r
j¼ 1 satisfy the 2r +1 linear equations which consist of

Xr +1
j¼1

C0;0;0;j

μk + ρ�0;0;j
¼ 0; k ¼ 1; 2; ¼ ; r

Xr +1
j¼1

C0;0;0;jμk
μk + ρ�0;0;j

eρ
�
0;0;jb ¼

Xr
j¼1

C�
0;0;0;0;jμk
μk + κ�0;0;j

eκ
�
0;0;jb + 1; k ¼ 1; 2; ¼ ; r

and Xr + 1
j¼1

C0;0;0;je
ρ�0;0;jb ¼

Xr
j¼1

C�
0;0;0;0;je

κ�0;0;jb + 1

□

3.2. ϕδ123;n;mðu; bÞ and φδ23;n;mðu; bÞ when n 2 N+ and m ¼ 0

We start with the special cases of (1.5) and (1.6) where n 2 N+ and m = 0, so that the aggregate
claims component Zδ3ðτbÞ ¼

PNðτbÞ
k¼1 e�δ3TkYk is absent in ϕδ123 ;n;mðu; bÞ and φδ23;n;mðu; bÞ. These will

be denoted by ϕδ123;n;0ðu; bÞ ¼ ϕδ12;nðu; bÞ and φδ23;n;0ðu; bÞ ¼ φδ2;nðu; bÞ, respectively, and given in the
following two theorems. The proofs are provided in the Appendix.

Theorem 4 For n 2 N+ , the Gerber–Shiu function ϕδ12;nðu; bÞ ¼ ϕδ123;n;0ðu; bÞ is given by

ϕδ12;nðu; bÞ ¼ ϕL;δ12;nðu; bÞ ¼
Xr + 1
j¼1

An;0;0;jeρn;0;ju; 0≤ u≤ b (3.13)

and

ϕδ12;nðu; bÞ ¼ ϕU;δ12;nðu; bÞ ¼
Xn
i¼ 0

Xr
j¼1

A�
n;0;i;0;je

κi;0;ju; u ≥ b (3.14)

where fρn;0;jgr +1j¼1 and fκi;0;jgrj¼1 are Lundberg’s roots defined via (3.2). The coefficients fA�
n;0;i;0;jg

r
j¼1

(for i = 0, 1,… , n− 1) can be obtained from

A�
n;0;i;0;j ¼

αn
ðn� iÞδ2

A�
n� 1;0;i;0;j; i ¼ 0; 1; ¼ ; n� 1; j ¼ 1; 2; ¼ ; r (3.15)

while the coefficients fAn;0;0;jgr + 1j¼1 and fA�
n;0;n;0;jg

r
j¼1 satisfy the 2r+1 linear equations which consist of

Xr +1
j¼1

An;0;0;j

μk + ρn;0;j
¼ 0; k ¼ 1; 2; ¼ ; r (3.16)

Xr +1
j¼1

An;0;0;j

μk + ρn;0;j
eρn;0;jb ¼

Xn
i¼ 0

Xr
j¼1

A�
n;0;i;0;j

μk + κi;0;j
eκi;0;jb; k ¼ 1; 2; ¼ ; r (3.17)

and

Xr + 1
j¼1

An;0;0;jeρn;0;jb ¼
Xn
i¼0

Xr
j¼1

A�
n;0;i;0;je

κi;0;jb (3.18)

The coefficients fA�
0;0;0;0;jg

r
j¼1 which form the starting point of the recursion in n can be evaluated

using Lemma 4. □
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Theorem 5 For n 2 N+ , the nth moment of the discounted dividends without ruin occurring
φδ2 ;nðu; bÞ ¼ φδ23;n;0ðu; bÞ is given by

φδ2;nðu; bÞ ¼ φL;δ2 ;nðu; bÞ ¼
Xr + 1
j¼1

Cn;0;0;je
ρ�n;0;ju; 0≤ u≤ b (3.19)

and
φδ2 ;nðu; bÞ ¼ φU;δ2 ;nðu; bÞ ¼

Xn
i¼ 0

Xr
j¼1

C�
n;0;i;0;je

κ�i;0;ju +
α

δ2

� �n

; u ≥ b (3.20)

where fρ�n;0;jg
r + 1
j¼1 and fκ�i;0;jg

r
j¼1 are Lundberg’s roots defined via (3.2). The coefficients fC�

n;0;i;0;jg
r
j¼1

(for i = 0, 1,… , n − 1) can be obtained from

C�
n;0;i;0;j ¼

αn
ðn� iÞδ2

C�
n� 1;0;i;0;j; i ¼ 0; 1; ¼ ; n� 1; j ¼ 1; 2; ¼ ; r (3.21)

while the coefficients fCn;0;0;jgr +1j¼1 and fC�
n;0;n;0;jg

r
j¼1 satisfy the 2r+1 linear equations which consist of

Xr + 1
j¼1

Cn;0;0;j

μk + ρ�n;0;j
¼ 0; k ¼ 1; 2; ¼ ; r (3.22)

Xr +1
j¼1

Cn;0;0;j

μk + ρ�n;0;j
eρ

�
n;0;jb ¼

Xn
i¼0

Xr
j¼1

C�
n;0;i;0;j

μk + κ�i;0;j
eκ

�
i;0;jb +

1
μk

α

δ2

� �n

; k ¼ 1; 2; ¼ ; r (3.23)

and Xr +1
j¼1

Cn;0;0;je
ρ�n;0;jb ¼

Xn
i¼ 0

Xr
j¼1

C�
n;0;i;0;je

κ�i;0;jb +
α

δ2

� �n

(3.24)

The coefficients fC�
0;0;0;0;jg

r
j¼1, which form the starting point of the recursion in n, can be evaluated

using Lemma 5. □

3.3. ϕδ123;n;mðu;bÞ and φδ23;n;mðu;bÞ when n ¼ 0 and m ¼ 1; 2

We now look at ϕδ123 ;n;mðu; bÞ when n = 0, which is denoted by ϕδ123 ;0;mðu; bÞ ¼ ϕδ13;mðu; bÞ in
section 2.1. The following theorem gives the explicit expression for ϕδ13;1ðu; bÞ. The proof is given in
the Appendix. It will be seen that the analysis is more involved when m is now non-zero.

Theorem 6 The Gerber–Shiu function ϕδ13;1ðu; bÞ ¼ ϕδ123 ;0;1ðu; bÞ is given by

ϕδ13;1ðu; bÞ ¼ ϕL;δ13;1ðu; bÞ ¼
X1
i¼0

Xr +1
j¼1

A0;1;i;jeρ0;i;ju; 0≤u≤b (3.25)

and

ϕδ13;1ðu; bÞ ¼ ϕU;δ13;1ðu; bÞ ¼
X1
i¼ 0

Xr
j¼1

A�
0;1;0;i;je

κ0;i;ju; u ≥ b (3.26)

where fρ0;i;jgr +1j¼1 and fκ0;i;jgrj¼1 are Lundberg’s roots defined via (3.2). The coefficients fA0;1;0;jgr + 1j¼1

and fA�
0;1;0;0;jg

r
j¼1 can be computed directly using

A0;1;0;j ¼
λA0;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + ρ0;0;jÞ2

; j ¼ 1; 2; ¼ ; r + 1 (3.27)
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and

A�
0;1;0;0;j ¼

λA�
0;0;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + κ0;0;jÞ2

; j ¼ 1; 2; ¼ ; r (3.28)

where fA0;0;0;jgr + 1j¼1 and fA�
0;0;0;0;jg

r
j¼1 are obtainable from Lemma 4. Then the coefficients fA0;1;1;jgr +1j¼1

and fA�
0;1;0;1;jg

r
j¼1 can be solved from the 2r+ 1 linear equations which consist of

X1
i¼0

Xr +1
j¼1

A0;1;i;j

μk + ρ0;i;j
+
Xr +1
j¼1

A0;0;0;j

ðμk + ρ0;0;jÞ2
¼ T 2

μk
wð0Þ; k ¼ 1; 2; ¼ ; r (3.29)

X1
i¼0

Xr + 1
j¼1

A0;1;i;j

μk + ρ0;i;j
eρ0;i;jb +

Xr +1
j¼1

A0;0;0;j

ðμk + ρ0;0;jÞ2
eρ0;0;jb ¼

X1
i¼ 0

Xr
j¼1

A�
0;1;0;i;j

μk + κ0;i;j
eκ0;i;jb +

Xr
j¼1

A�
0;0;0;0;j

ðμk + κ0;0;jÞ2
eκ0;0;jb;

k ¼ 1; 2; ¼ ; r ð3:30Þ

and X1
i¼ 0

Xr +1
j¼1

A0;1;i;jeρ0;i;jb ¼
X1
i¼0

Xr
j¼1

A�
0;1;0;i;je

κ0;i;jb (3.31)

where T 2
μk
wð0Þ ¼

Ð1
0 ye�μkywðyÞdy in (3.29) is the notation of a double Dickson–Hipp operator

(see Dickson & Hipp, 2001; Li & Garrido, 2004). □

The next theorem gives the result for ϕδ13;2ðu; bÞ. Since the logic of the derivation is identical to that
of Theorem 6 (although it is more tedious), the proof is omitted. Note that (3.32)–(3.35) concerning
the Gerber–Shiu function ϕL;δ13;2ðu; bÞ in the lower layer are direct consequences of (39)–(42) in
theorem 7 of Cheung et al. (2015) (see Remark 4).

Theorem 7 The Gerber–Shiu function ϕδ13 ;2ðu; bÞ ¼ ϕδ123 ;0;2ðu; bÞ is given by

ϕδ13;2ðu; bÞ ¼ ϕL;δ13 ;2ðu; bÞ ¼
X2
i¼ 0

Xr +1
j¼1

A0;2;i;jeρ0;i;ju; 0≤ u≤ b (3.32)

and

ϕδ13;2ðu; bÞ ¼ ϕU;δ13;2ðu; bÞ ¼
X2
i¼ 0

Xr
j¼1

A�
0;2;0;i;je

κ0;i;ju; u ≥ b

where fρ0;i;jgr +1j¼1 and fκ0;i;jgrj¼1 are Lundberg’s roots defined via (3.2). For i = 0, 1, the coefficients
fA0;2;i;jgr +1j¼1 and fA�

0;2;0;i;jg
r
j¼1 can be computed directly using

A0;2;0;j ¼
λA0;1;0;j

δ3

Xr
k¼1

qkμk
ðμk + ρ0;0;jÞ2

+
λA0;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + ρ0;0;jÞ3

; j ¼ 1; 2; ¼ ; r + 1 (3.33)

A0;2;1;j ¼
2λA0;1;1;j

δ3

Xr
k¼1

qkμk
ðμk + ρ0;1;jÞ2

; j ¼ 1; 2; ¼ ; r + 1 (3.34)

A�
0;2;0;0;j ¼

λA�
0;1;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + κ0;0;jÞ2

+
λA�

0;0;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + κ0;0;jÞ3

; j ¼ 1; 2; ¼ ; r
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and
A�

0;2;0;1;j ¼
2λA�

0;1;0;1;j

δ3

Xr
k¼1

qkμk
ðμk + κ0;1;jÞ2

; j ¼ 1; 2; ¼ ; r

where fA0;0;0;jgr +1j¼1 and fA�
0;0;0;0;jg

r
j¼1 are obtainable from Lemma 4, while for i = 0, 1, the

coefficients fA0;1;i;jgr +1j¼1 and fA�
0;1;0;i;jg

r
j¼1 are obtainable from Theorem 6. Then, the coefficients

fA0;2;2;jgr + 1j¼1 and fA�
0;2;0;2;jg

r
j¼1 can be solved from the 2r+ 1 linear equations which consist of

X2
i¼ 0

Xr +1
j¼1

A0;2;i;j

μk + ρ0;i;j
+
X1
i¼0

Xr +1
j¼1

2A0;1;i;j

ðμk + ρ0;i;jÞ2
+
Xr +1
j¼1

2A0;0;0;j

ðμk + ρ0;0;jÞ3
¼ 2T 3

μk
wð0Þ; k ¼ 1; 2; ¼ ; r (3.35)

X2
i¼0

Xr +1
j¼1

A0;2;i;j

μk + ρ0;i;j
eρ0;i;jb +

X1
i¼ 0

Xr +1
j¼1

2A0;1;i;j

ðμk + ρ0;i;jÞ2
eρ0;i;jb +

Xr +1
j¼1

2A0;0;0;j

ðμk + ρ0;0;jÞ3
eρ0;0;jb

¼
X2
i¼ 0

Xr
j¼1

A�
0;2;0;i;j

μk + κ0;i;j
eκ0;i;jb +

X1
i¼ 0

Xr
j¼1

2A�
0;1;0;i;j

ðμk + κ0;i;jÞ2
eκ0;i;jb +

Xr
j¼1

2A�
0;0;0;0;j

ðμk + κ0;0;jÞ3
eκ0;0;jb; k ¼ 1; 2; ¼ ; r

and X2
i¼0

Xr +1
j¼1

A0;2;i;jeρ0;i;jb ¼
X2
i¼ 0

Xr
j¼1

A�
0;2;0;i;je

κ0;i;jb

where T 3
μk
wð0Þ ¼

Ð1
0 ðy2e�μky=2ÞwðyÞ dy in (3.35) is the notation of a triple Dickson–Hipp

operator. □

Concerning the first two moments of the aggregate discounted claims without ruin occurring
(denoted by φδ23;0;mðu; bÞ ¼ φδ3;mðu; bÞ for m = 1, 2), the results are stated in the following theorems.
Their proofs follow closely those of Theorems 6 and 7 and are omitted.

Theorem 8 The expected aggregate discounted claims φδ3 ;1ðu; bÞ ¼ φδ23;0;1ðu; bÞ without ruin
occurring is given by

φδ3 ;1ðu; bÞ ¼ φL;δ3;1ðu; bÞ ¼
X1
i¼ 0

Xr + 1
j¼1

C0;1;i;je
ρ�0;i;ju; 0≤u≤b;

and

φδ3;1ðu; bÞ ¼ φU;δ3;1ðu; bÞ ¼
X1
i¼ 0

Xr
j¼1

C�
0;1;0;i;je

κ�0;i;ju +
λE½Y1�
δ3

; u ≥ b

where fρ�0;i;jg
r +1
j¼1 and fκ�0;i;jg

r
j¼1 are Lundberg’s roots defined via (3.2). The coefficients fC0;1;0;jgr + 1j¼1

and fC�
0;1;0;0;jg

r
j¼1 can be computed directly using

C0;1;0;j ¼
λC0;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + ρ�0;0;jÞ

2; j ¼ 1; 2; ¼ ; r + 1

and

C�
0;1;0;0;j ¼

λC�
0;0;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + κ�0;0;jÞ

2; j ¼ 1; 2; ¼ ; r
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where fC0;0;0;jgr + 1j¼1 and fC�
0;0;0;0;jg

r
j¼1 are obtainable from Lemma 5. Then the coefficients fC0;1;1;jgr +1j¼1

and fC�
0;1;0;1;jg

r
j¼1 can be solved from the 2r+ 1 linear equations which consist of

X1
i¼ 0

Xr +1
j¼1

C0;1;i;j

μk + ρ�0;i;j
+
Xr + 1
j¼1

C0;0;0;j

ðμk + ρ�0;0;jÞ
2 ¼ 0; k ¼ 1; 2; ¼ ; r

X1
i¼ 0

Xr + 1
j¼1

C0;1;i;j

μk + ρ�0;i;j
eρ

�
0;i;jb +

Xr +1
j¼1

C0;0;0;j

ðμk + ρ�0;0;jÞ
2 e

ρ�0;0;jb

¼
X1
i¼ 0

Xr
j¼1

C�
0;1;0;i;j

μk + κ�0;i;j
eκ

�
0;i;jb +

Xr
j¼1

C�
0;0;0;0;j

ðμk + κ�0;0;jÞ
2 e

κ�0;0;jb +
λE½Y1�
μkδ3

+
1
μ2k

; k ¼ 1; 2; ¼ ; r

and X1
i¼ 0

Xr +1
j¼1

C0;1;i;je
ρ�0;i;jb ¼

X1
i¼0

Xr
j¼1

C�
0;1;0;i;je

κ�0;i;jb +
λE½Y1�
δ3

□

Theorem 9 The second moment of the aggregate discounted claims φδ3;2ðu; bÞ ¼ φδ23;0;2ðu; bÞ
without ruin occurring is given by

φδ3 ;2ðu; bÞ ¼ φL;δ3;2ðu; bÞ ¼
X2
i¼ 0

Xr + 1
j¼1

C0;2;i;je
ρ�0;i;ju; 0≤u≤b

and

φδ3 ;2ðu; bÞ ¼ φU;δ3 ;2ðu; bÞ ¼
X2
i¼ 0

Xr
j¼1

C�
0;2;0;i;je

κ�0;i;ju + θδ3;2; u ≥ b (3.36)

where fρ�0;i;jg
r + 1
j¼1 and fκ�0;i;jg

r
j¼1 are Lundberg’s roots defined via (3.2). The constant term θδ3;2 in

(3.36) can be evaluated by Lemma 1 as θδ3 ;2 ¼ λð2E½Y1�θδ3 ;1 +E½Y2
1 �Þ=ð2δ3Þ with θδ3;1 ¼ λE½Y1�=δ3.

For i = 0, 1, the coefficients fC0;2;i;jgr +1j¼1 and fC�
0;2;0;i;jg

r
j¼1 can be computed directly using

C0;2;0;j ¼
λC0;1;0;j

δ3

Xr
k¼1

qkμk
ðμk + ρ�0;0;jÞ

2 +
λC0;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + ρ�0;0;jÞ

3; j ¼ 1; 2; ¼ ; r + 1

C0;2;1;j ¼
2λC0;1;1;j

δ3

Xr
k¼1

qkμk
ðμk + ρ�0;1;jÞ

2; j ¼ 1; 2; ¼ ; r + 1

C�
0;2;0;0;j ¼

λC�
0;1;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + κ�0;0;jÞ

2 +
λC�

0;0;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + κ�0;0;jÞ

3; j ¼ 1; 2; ¼ ; r

and

C�
0;2;0;1;j ¼

2λC�
0;1;0;1;j

δ3

Xr
k¼1

qkμk
ðμk + κ�0;1;jÞ

2; j ¼ 1; 2; ¼ ; r

where fC0;0;0;jgr + 1j¼1 and fC�
0;0;0;0;jg

r
j¼1 are obtainable from Lemma 5, while for i = 0, 1 the coefficients

fC0;1;i;jgr +1j¼1 and fC�
0;1;0;i;jg

r
j¼1 are obtainable from Theorem 8. Then, the coefficients fC0;2;2;jgr +1j¼1 and

fC�
0;2;0;2;jg

r
j¼1 can be solved from the 2r +1 linear equations which consist of

X2
i¼ 0

Xr + 1
j¼1

C0;2;i;j

μk + ρ�0;i;j
+
X1
i¼ 0

Xr + 1
j¼1

2C0;1;i;j

ðμk + ρ�0;i;jÞ
2 +
Xr +1
j¼1

2C0;0;0;j

ðμk + ρ�0;0;jÞ
3 ¼ 0; k ¼ 1; 2; ¼ ; r
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X2
i¼0

Xr +1
j¼1

C0;2;i;j

μk + ρ�0;i;j
eρ

�
0;i;jb +

X1
i¼ 0

Xr +1
j¼1

2C0;1;i;j

ðμk + ρ�0;i;jÞ
2 e

ρ�0;i;jb +
Xr +1
j¼1

2C0;0;0;j

ðμk + ρ�0;0;jÞ
3 e

ρ�0;0;jb � θδ3 ;2
μk

� 2θδ3;1
μ2k

� 2
μ3k

¼
X2
i¼ 0

Xr
j¼1

C�
0;2;0;i;j

μk + κ�0;i;j
eκ

�
0;i;jb +

X1
i¼ 0

Xr
j¼1

2C�
0;1;0;i;j

ðμk + κ�0;i;jÞ
2 e

κ�0;i;jb +
Xr
j¼1

2C�
0;0;0;0;j

ðμk + κ�0;0;jÞ
3 e

κ�0;0;jb; k ¼ 1; 2; ¼ ; r

and X2
i¼ 0

Xr +1
j¼1

C0;2;i;je
ρ�0;i;jb ¼

X2
i¼ 0

Xr
j¼1

C�
0;2;0;i;je

κ�0;i;jb + θδ3;2

□

3.4. ϕδ123;n;mðu;bÞ and φδ23;n;mðu;bÞ when n ¼ m ¼ 1

In the next two theorems, the procedures to find ϕδ123;1;1ðu; bÞ and φδ23;1;1ðu; bÞ are provided. These
two quantities will be useful for computing the covariance (and hence correlation) between the
discounted dividends Dδ2 ðτbÞ and the aggregate discounted claims Zδ3ðτbÞ ¼

PNðτbÞ
k¼1 e�δ3TkYk. Again,

(3.37), (3.39), and (3.43) follow directly from Cheung et al. (2015, equations (50)–(52)).

Theorem 10 The Gerber–Shiu function ϕδ123 ;1;1ðu; bÞ is given by

ϕδ123 ;1;1ðu; bÞ ¼ ϕL;δ123 ;1;1ðu; bÞ ¼
X1
i¼ 0

Xr +1
j¼1

A1;1;i;jeρ1;i;ju; 0≤ u≤ b (3.37)

and

ϕδ123 ;1;1ðu; bÞ ¼ ϕU;δ123 ;1;1ðu; bÞ ¼
X1
l¼0

X1
i¼0

Xr
j¼1

A�
1;1;l;i;je

κl;i;ju; u ≥ b (3.38)

where fρ1;i;jgr + 1j¼1 and fκl;i;jgrj¼1 are Lundberg’s roots defined via (3.2). The coefficients fA1;1;0;jgr + 1j¼1 ,
fA�

1;1;0;i;jg
r
j¼1 (for i = 0, 1) and fA�

1;1;1;0;jg
r
j¼1 can be computed directly using

A1;1;0;j ¼
λA1;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + ρ1;0;jÞ2

; j ¼ 1; 2; ¼ ; r + 1 (3.39)

A�
1;1;0;0;j ¼

αA�
0;1;0;0;j

δ2 + δ3
+
λA�

1;0;0;0;j

δ2 + δ3

Xr
k¼1

qkμk
ðμk + κ0;0;jÞ2

; j ¼ 1; 2; ¼ ; r (3.40)

A�
1;1;0;1;j ¼

α

δ2
A�

0;1;0;1;j; j ¼ 1; 2; ¼ ; r (3.41)

and

A�
1;1;1;0;j ¼

λA�
1;0;1;0;j

δ3

Xr
k¼1

qkμk
ðμk + κ1;0;jÞ2

; j ¼ 1; 2; ¼ ; r (3.42)

where fA1;0;0;jgr +1j¼1 and fA�
1;0;i;0;jg

r
j¼1 (for i = 0, 1) are obtainable from Theorem 4, while fA�

0;1;0;i;jg
r
j¼1

(for i = 0, 1) are obtainable from Theorem 6. Then the coefficients fA1;1;1;jgr +1j¼1 and fA�
1;1;1;1;jg

r
j¼1 can

be solved from the 2r+ 1 linear equations which consist of

X1
i¼ 0

Xr + 1
j¼1

A1;1;i;j

μk + ρ1;i;j
+
Xr +1
j¼1

A1;0;0;j

ðμk + ρ1;0;jÞ2
¼ 0; k ¼ 1; 2; ¼ ; r (3.43)
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X1
i¼ 0

Xr + 1
j¼1

A1;1;i;j

μk + ρ1;i;j
eρ1;i;jb +

Xr +1
j¼1

A1;0;0;j

ðμk + ρ1;0;jÞ2
eρ1;0;jb

¼
X1
l¼0

X1
i¼0

Xr
j¼1

A�
1;1;l;i;j

μk + κl;i;j
eκl;i;jb +

X1
i¼ 0

Xr
j¼1

A�
1;0;i;0;j

ðμk + κi;0;jÞ2
eκi;0;jb; k ¼ 1; 2; ¼ ; r ð3:44Þ

and X1
i¼ 0

Xr +1
j¼1

A1;1;i;jeρ1;i;jb ¼
X1
l¼0

X1
i¼ 0

Xr
j¼1

A�
1;1;l;i;je

κl;i;jb (3.45)

□

Theorem 11 The first joint moment of the discounted dividends and the aggregate discounted claims
φδ23;1;1ðu; bÞ without ruin occurring is given by

φδ23;1;1ðu; bÞ ¼ φL;δ23;1;1ðu; bÞ ¼
X1
i¼0

Xr +1
j¼1

C1;1;i;je
ρ�1;i;ju; 0≤u≤b

and

φδ23;1;1ðu; bÞ ¼ φU;δ23;1;1ðu; bÞ ¼
X1
l¼0

X1
i¼ 0

Xr
j¼1

C�
1;1;l;i;je

κ�l;i;ju +
αλE½Y1�
δ2δ3

; u ≥ b

where fρ�1;i;jg
r +1
j¼1 and fκ�l;i;jg

r
j¼1 are Lundberg’s roots defined via (3.2). The coefficients fC1;1;0;jgr +1j¼1 ,

fC�
1;1;0;i;jg

r
j¼1 (for i = 0, 1) and fC�

1;1;1;0;jg
r
j¼1 can be computed directly using

C1;1;0;j ¼
λC1;0;0;j

δ3

Xr
k¼1

qkμk
ðμk + ρ�1;0;jÞ

2; j ¼ 1; 2; ¼ ; r + 1

C�
1;1;0;0;j ¼

αC�
0;1;0;0;j

δ2 + δ3
+
λC�

1;0;0;0;j

δ2 + δ3

Xr
k¼1

qkμk
ðμk + κ�0;0;jÞ

2; j ¼ 1; 2; ¼ ; r

C�
1;1;0;1;j ¼

α

δ2
C�

0;1;0;1;j; j ¼ 1; 2; ¼ ; r

and

C�
1;1;1;0;j ¼

λC�
1;0;1;0;j

δ3

Xr
k¼1

qkμk
ðμk + κ�1;0;jÞ

2; j ¼ 1; 2; ¼ ; r

where fC1;0;0;jgr + 1j¼1 and fC�
1;0;i;0;jg

r
j¼1 (for i = 0, 1) are obtainable from Theorem 5, while fC�

0;1;0;i;jg
r
j¼1

(for i = 0, 1) are obtainable from Theorem 8. Then the coefficients fC1;1;1;jgr + 1j¼1 and fC�
1;1;1;1;jg

r
j¼1 can

be solved from the 2r +1 linear equations which consist of

X1
i¼ 0

Xr + 1
j¼1

C1;1;i;j

μk + ρ�1;i;j
+
Xr +1
j¼1

C1;0;0;j

ðμk + ρ�1;0;jÞ
2 ¼ 0; k ¼ 1; 2; ¼ ; r

X1
i¼ 0

Xr + 1
j¼1

C1;1;i;j

μk + ρ�1;i;j
eρ

�
1;i;jb +

Xr +1
j¼1

C1;0;0;j

ðμk + ρ�1;0;jÞ
2 e

ρ�1;0;jb

¼
X1
l¼0

X1
i¼ 0

Xr
j¼1

C�
1;1;l;i;j

μk + κ�l;i;j
eκ

�
l;i;jb +

X1
i¼0

Xr
j¼1

C�
1;0;i;0;j

ðμk + κ�i;0;jÞ
2 e

κ�i;0;jb +
αλE½Y1�
μkδ2δ3

+
α

μ2kδ2
; k ¼ 1; 2; ¼ ; r

Eric C.K. Cheung and Haibo Liu

252

https://doi.org/10.1017/S1748499516000075 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499516000075


and

X1
i¼ 0

Xr + 1
j¼1

C1;1;i;je
ρ�1;i;jb ¼

X1
l¼0

X1
i¼0

Xr
j¼1

C�
1;1;l;i;je

κ�l;i;jb +
αλE½Y1�
δ2δ3

□

Remark 8 From the statements of the theorems in this section, it is important to note the recursive
nature of the determination of the coefficients involved in the solution forms (3.3)–(3.6). For
example, the computational steps required to calculate ϕδ123 ;1;1ðu; bÞ via Theorem 10 involve the use
of earlier lemma and theorems, and these are summarised as follows:

1. For each fixed l = 1, 2 and n, m = 0, 1, we solve the Lundberg’s equation (3.2), which has r +1
roots, i.e. the equation is solved eight times. When l = 1 the roots are denoted by fρn;m;jgr +1j¼1 , but
when l = 2 they are denoted by fκn;m;jgr +1j¼1 and the non-negative root κn;m;r +1 is discarded.

2. Obtain fA0;0;0;jgr +1j¼1 and fA�
0;0;0;0;jg

r
j¼1 from Lemma 4 by solving the linear equations (3.9)–(3.11).

3. Apply the special case of Theorem 4 under n = 1, where fA1;0;0;jgr + 1j¼1 and fA�
1;0;i;0;jg

r
j¼1 (for i = 0,

1) are computed from (3.15) and the linear system (3.16)–(3.18).

4. Use Theorem 6 to compute fA0;1;i;jgr +1j¼1 and fA�
0;1;0;i;jg

r
j¼1 (both for i = 0, 1) via (3.27) and (3.28)

along with the linear system (3.29)–(3.31). (Although A0;1;i;j’s are not needed in the next step, they
have to be determined together with A�

0;1;0;1;j’s.)

5. Utilise Theorem 10 to calculate fA1;1;i;jgr +1j¼1 (for i = 0, 1) and fA�
1;1;l;i;jg

r
j¼1 (for l, i = 0, 1) via

(3.39)–(3.42) and the linear system (3.43)–(3.45), so that ϕδ123 ;1;1ðu; bÞ is finally evaluated with
(3.37) and (3.38). □

Remark 9 Following the proof of Theorem 4 in the Appendix, it is noted that the exact value of the
limit limu!1ϕδ12;1ðu; bÞ is indeed not required for deriving the full solution to ϕδ12;1ðu; bÞ. We only
need the finiteness of the limit to conclude that the coefficient of the exponential term eκ1;0;r + 1u is 0 as
κ1;0;r +1 > 0, and then from (3.14) the limit limu!1 ϕδ12;1ðu; bÞ must equal 0 as κ1;0;j has negative real
part for j = 1, 2,…, r. This is also true for the proof of Theorem 5, except that the final term in (3.20)
(when n = 1) obtainable via equating the constant term in (A.17) is non-zero (and it automatically
satisfies the limiting value limu!1 φδ2 ;1ðu; bÞ suggested by Lemma 2). The same comments are also
applicable to Theorems 6–11 (although the proofs of Theorems 7–11 have been omitted). □

4. Numerical Examples

In this section, the results in section 3 are applied to compute the correlations involving the total
discounted dividends until ruin Dδ2 ðτbÞ, the aggregate discounted claim amount until ruinPNðτbÞ

k¼1 e�δ3TkYk, and the time of ruin τb (which is considered only when ruin occurs). Hence, we assume
a cost function of f(y) = y (i.e., Zδ3ðτbÞ ¼

PNðτbÞ
k¼1 e�δ3TkYk) and a penalty of w ≡ 1 throughout this

section. With initial surplus Ub(0) = u and threshold level b, for notational convenience we denote the
unconditional expectation of a random variable X by E[X∣u;b], and we shall use Er[X∣u;b] (Es[X∣u;b],
respectively) to denote the expectation of X conditional on the event fτb <1g (fτb ¼ 1g, respectively).
The subscripts “r” and “s” correspond to “ruin” and “survival”, respectively. Clearly, one has

Er½Xju; b� ¼
E½X1fτb <1gju; b�

ψðu; bÞ
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and

Es½Xju; b� ¼
E½X1fτb¼1gju; b�

φðu; bÞ

where ψðu; bÞ and φðu; bÞ are the ruin probability and survival probability, respectively. Then the
correlation of the random variables X1 and X2 is given by

Corr�ðX1;X2ju; bÞ ¼
Cov�ðX1;X2ju; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var�ðX1ju; bÞVar�ðX2ju; bÞ
p

where

Cov�ðX1;X2ju; bÞ ¼ E�½X1X2ju; b� �E�½X1ju; b�E�½X2ju; b�

is the covariance of X1 and X2, and

Var�ðXju; bÞ ¼ E�½X2ju; b� � ðE�½Xju; b�Þ2

is the variance of X. Here the expectation E∙ can be the unconditional expectation E or the conditional
expectations Er or Es, and this applies to other moment-based quantities as well. All intermediate
quantities required in our computation involving τb, Dδ2ðτbÞ and Zδ3ðτbÞ are obtainable from the
Gerber–Shiu function ϕδ1 ;δ2 ;δ3;n;mðu; bÞ ¼ ϕδ123;n;mðu; bÞ in (1.5) and the joint moment φδ2 ;δ3 ;n;mðu; bÞ ¼
φδ23 ;n;mðu; bÞ in (1.6). For example, the first joint moment Er½Dδ2ðτbÞZδ3ðτbÞju; b� conditional on
ruin is the ratio of E½Dδ2ðτbÞZδ3ðτbÞ1fτb <1gju; b� ¼ ϕδ123;1;1ðu; bÞjδ1 ¼ 0 to ψðu; bÞ ¼ ϕδ1ðu; bÞjδ1 ¼0,
which can be evaluated using Theorem 10 and Lemma 4. Similarly, the first joint moment
Es½Dδ2ðτbÞZδ3 ðτbÞju; b� conditional on survival follows from E½Dδ2ðτbÞZδ3ðτbÞ1fτb ¼1gju; b� ¼
φδ23 ;1;1ðu; bÞ (that is available in Theorem 11) and φðu; bÞ ¼ 1�ψðu; bÞ. The unconditional first joint
moment E½Dδ2ðτbÞZδ3ðτbÞju; b� is given by (1.7) when n = m = 1. It is instructive to note that corre-
lations in relation to τb only exist when τb <1, and the (joint) moments involving τb can be obtained
from ϕδ123;n;mðu; bÞ. For example, one has

Er½τbZδ3 ðτbÞju; b� ¼
E½τbZδ3ðτbÞ1fτb <1gju; b�

ψðu; bÞ ¼ �
∂
∂δ1 ϕδ123;0;1ðu; bÞjδ1 ¼0

ψðu; bÞ

Before discussing specific examples, we first note that in general the relationship

u + cτb + jUbðτbÞj¼ DðτbÞ + SðτbÞon the set fτb <1g (4.1)

among the random variables is valid for sample paths leading to ruin, where DðτbÞ is the total
dividends paid until ruin and SðτbÞ ¼

PNðτbÞ
k¼1 Yk is the aggregate claims until ruin (both without

discounting). For these sample paths, it is clear that

DðτbÞ≤ ατb on the set fτb <1g (4.2)

and therefore
SðτbÞ ≥ u + c2τb + jUbðτbÞjon the set fτb <1g (4.3)

On the other hand, concerning the sample paths for which the process survives, one has that

DðtÞ + SðtÞ≤ u + ct for all t ≥ 0 on the set fτb ¼ 1g (4.4)
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The parameter values that are used for all numerical illustrations are summarised in Table 1. In each
subsequent figure, the quantity of interest is plotted against the initial surplus level u under three
different claim size distributions, namely

i. a sum of two exponentials (“Sum Exp”) with density p(y) = 3e − (3/2)y −3e −3y;

ii. an exponential distribution (“Exp”) with density p(y) = e−y; and

iii. a mixture of two exponentials (“Mixed Exp”) with density p(y) = (1/6)e−(1/2)y + (4/3)e−2y.

All these distributions belong to the class of combinations of exponentials (see (3.1)) and have the same
mean of 1 (and the loading condition c2>λE½Y1� holds true). However, they have different amount of
variability as evident in their variances of 0.56, 1, and 2, respectively. The curves corresponding to the
above claim distributions are marked in solid, dashed, and dotted lines, respectively.

Conditional on ruin occurring, Figures 1–3 show how the pairwise correlations of τ10 and Z0:01ðτ10Þ
and D0:01ðτ10Þ vary with u for 0≤u≤200. (For simplicity, we shall write τ, Z, and D instead of τ10,
Z0:01ðτ10Þ, and D0:01ðτ10Þ, respectively, in the y-axis of the plots.) From Figure 1, it is observed that
Corrrðτ10;Z0:01ðτ10Þju; 10Þ for all three claim distributions is of the same shape. Specifically,
Corrrðτ10;Z0:01ðτ10Þju; 10Þ starts with a positive value of over 0.9, and it decreases as u increases and
then becomes negative when u reaches approximately 95. This complements figures 1 and 2 in
Cheung & Woo (2016), which demonstrated a sign change of the covariance of the ruin time and the
aggregate discounted claims until ruin in a dependent Sparre Andersen risk model without dividends as
u increases. Some interpretations therein are indeed applicable: for fixed u, two opposing effects are in
place when one analyses sample paths for which τb is large. Intuitively, the aggregate (non-discounted)

Table 1. Parameters used in all numerical examples.

Parameters Value

Threshold level b 10
Premium rate c = c1 1.5
Dividend rate α = c1 = c2 0.2
Poisson arrival rate λ 1
Shareholders’ force of interest δ2 0.01
Policyholders’ force of interest δ3 0.01

Figure 1. Correlation of ruin time and aggregate discounted claims conditional on ruin.
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claim amount Sðτ10Þ ¼
PNðτ10Þ

k¼1 Yk tends to be large because more claims arise as the process survives
longer (see also (4.3)). But these claims occur over a longer time horizon and a large claim does not
happen early (otherwise it would have caused early ruin), meaning that the discounted amount
Z0:01ðτ10Þ ¼

PNðτ10Þ
k¼1 e�0:01TkYk possibly has a tendency to become smaller due to discounting.

Figure 1 suggests that the former effect is more dominant until the correlation changes sign at around
u = 95. As u increases further from 95, the effect of discounting starts to dominate because the
discounting on the nominal amount u appearing on the right-hand side of (4.3) is getting significant.

Next, when we look at Figure 2, which depicts the behaviour of Corrrðτ10;D0:01ðτ10Þju; 10Þ, it is
noted that the correlation is always positive. This is unlike Corrrðτ10;Z0:01ðτ10Þju; 10Þ in Figure 1
where there is a change in sign as u increases. A possible explanation is that u does not appear on the
right-hand side of (4.2) (as dividend is paid from part of the premium income but not the initial
surplus), and thus the effect of discounting on u is absent in this case. As a result, the positive
correlation between τ10 and D0:01ðτ10Þ is simply attributed to the fact that, for each fixed u, the
surplus process is more likely to stay above the threshold more often when the ruin time is large,
resulting in more dividends.

In Figure 3, the correlation CorrrðZ0:01ðτ10Þ;D0:01ðτ10Þju; 10Þ conditional on ruin takes on positive
values when u increases to about 100 and then it becomes negative. From the above discussions, we

Figure 2. Correlation of ruin time and discounted dividends conditional on ruin.

Figure 3. Correlation of aggregate discounted claims and discounted dividends conditional on ruin.
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argue that the aggregate non-discounted values of the claim amount Sðτ10Þ and dividends Dðτ10Þ
both tend to increase with the ruin time τ10. However, Sðτ10Þ and Dðτ10Þ may also move in
opposite directions because only part of the claims are paid from the premium, while all dividend
payments come from the premium (see also (4.1) for the constraint on the sum Dðτ10Þ + Sðτ10Þ).
Under discounting, Figure 3 suggests that the former effect dominates for u less than 100,
while the latter becomes dominant when u exceeds 100. Interestingly, we observe that
CorrrðZ0:01ðτ10Þ;D0:01ðτ10Þju; 10Þ in Figure 3 changes sign at roughly the same place as
Corrrðτ10;Z0:01ðτ10Þju; 10Þ does in Figure 1. Note also that the curves in Figure 3 are ordered
according to the variance of the individual claim size distribution.

Now, we turn to Figure 4 concerning the correlation of Z0:01ðτ10Þ and D0:01ðτ10Þ conditional on
survival. Clearly, the shape of CorrsðZ0:01ðτ10Þ;D0:01ðτ10Þju; 10Þ is completely different from that of
CorrrðZ0:01ðτ10Þ;D0:01ðτ10Þju; 10Þ in Figure 3. In particular, CorrsðZ0:01ðτ10Þ;D0:01ðτ10Þju; 10Þ in
Figure 4 begins at a negative value between −0.55 and −0.60. It increases with u, stays negative and
converges to 0 from below. Note also that the above pattern appears to kick in earlier when the claim
size has smaller variance. The reason for negative correlation is the constraint (4.4), which makes it
impossible for both Z0:01ðτ10Þ and D0:01ðτ10Þ to be large in the presence of discounting.
The convergence of CorrsðZ0:01ðτ10Þ;D0:01ðτ10Þju; 10Þ to 0 as u increases can be explained by
zero covariance at the limit. Indeed, we can apply Lemma 2 three times with (n, m) = (1, 1), (1, 0),
and (0, 1) to see that

lim
u!1

E½Dδ2ðτbÞZδ3 ðτbÞ1fτb¼1gju; b�

¼ lim
u!1

E½Dδ2ðτbÞ1fτb¼1gju; b�
� �

lim
u!1

E½Zδ3ðτbÞ1fτb¼1gju; b�
� �

Division of each of the three above limits by the limiting survival probability limu!1φðu; bÞ ¼ 1
reveals that CovsðZδ3 ðτbÞ;Dδ2ðτbÞju; bÞ ¼ Es½Zδ3ðτbÞDδ2 ðτbÞju; b� �Es½Zδ3 ðτbÞju; b�Es½Dδ2ðτbÞju; b�
tends to 0 as u ! 1.

Lastly, Figure 5 plots the unconditional correlation of Z0:01ðτ10Þ and D0:01ðτ10Þ against u. As a
function of u, the correlation CorrðZ0:01ðτ10Þ;D0:01ðτ10Þju; 10Þ first decreases from over 0.95 to
negative values and finally converges to 0. Similar to Figure 4, the pattern prevails earlier when the
individual claim size has less variability. Note that the unconditional correlation takes all sample

Figure 4. Correlation of aggregate discounted claims and discounted dividends conditional on
survival.
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paths into account regardless of whether the process ruins or survives. The contributions of these
events are in accordance with the ruin probability ψðu; 10Þ and the survival probability
φðu; 10Þ ¼ 1�ψðu; 10Þ, respectively. As u increases, ψðu; 10Þ decreases and converges to 0 and
therefore the impact of ruin occurrence becomes less significant while that of survival becomes
stronger. The shape of Figure 5 is thus a combination of Figures 3 and 4.

5. Concluding Remarks

This paper jointly analyses the aggregate discounted claims until ruin (payments to policyholders)
and the discounted dividends until ruin (payments to shareholders) in the compound Poisson
insurance risk model with a threshold dividend strategy. The method adopted here is based on the
derivation of recursive IDEs satisfied by Gerber–Shiu-type functions involving the joint moments of
these two random variables. When each claim amount is distributed as a combination of expo-
nentials, these IDEs are transformed to ordinary differential equations that can be solved with the
help of the continuity and limiting conditions.

An alternative approach will be to connect the risk process to an equivalent fluid flow model (e.g.,
Badescu et al., 2005). In such a construction, a downward jump (caused by the arrival of a claim) of
size y in the risk model is replaced by decreasing segment of slope −C in the fluid model over a time
period of y/C for some constant C> 0. It is well known that (e.g., Ramaswami, 2006; Ahn et al.,
2007) the Laplace transforms of various first passage times can typically be expressed in terms of the
Laplace transform of the busy period, whose evaluation can be done by numerical algorithms that
converge quadratically fast (e.g., Ahn & Ramaswami, 2005; Bean et al., 2005). Then one may try to
express our Gerber–Shiu-type functions in terms of these quantities pertaining to the fluid model.
While the moments of discounted dividends were derived by Badescu & Landriault (2008) in this
manner for a multi-threshold model, the aggregate discounted claim amount until ruin has never
been analysed via fluid flow to the best of our knowledge. Nevertheless, in the absence of dis-
counting, we note that the total dividend is (a scalar multiple of) the occupation time when the fluid
level is in an increasing phase above the threshold level b, while the aggregate claim amount cor-
responds to (a scalar multiple of) the occupation time of the fluid in a decreasing phase. Finally, we
also remark that another research problem will be to determine the exact joint distribution of the
discounted dividends and the aggregate discounted claims until ruin (as opposed to joint moments in
the present work), which is expected to be a very challenging task. We leave these as open questions.

Figure 5. Unconditional correlation of aggregate discounted claims and discounted dividends.
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Appendix: Proofs of Theorems and Lemmas in Sections 2 and 3

Proof of Theorem 1: We use the standard approach of considering the time interval (0,h] for some
small h> 0. Conditioning on all possible events together with a binomial expansion (if a claim
occurs) yields, for 0≤ u<b

ϕδ13;mðu; bÞ ¼ ð1� λhÞe�ðδ1 +mδ3Þhϕδ13;mðu + c1h; bÞ

+ λhe�ðδ1 +mδ3Þh
ðu + c1h
0

Xm
i¼0

m

i

 !
f m� iðyÞϕδ13;iðu + c1h� y; bÞpðyÞdy

"

+
ð1
u+ c1h

f mðyÞwðu + c1h; y� u� c1hÞpðyÞdy
�
+ oðhÞ ðA:1Þ

Letting h ! 0+ , one observes that ϕδ13 ;mðu; bÞ is right-continuous in u for 0≤u<b. Since
e�ðδ1 +mδ3Þh ¼ 1�ðδ1 +mδ3Þh + oðhÞ, rearrangements and division by h give, for 0<u≤b

ϕδ13;mðu + c1h; bÞ�ϕδ13;mðu; bÞ
h

�ðλ + δ1 +mδ3Þϕδ13;mðu + c1h; bÞ

+ λe�ðδ1 +mδ3Þh
ðu + c1h
0

Xm
i¼ 0

m

i

 !
f m� iðyÞϕδ13;iðu + c1h� y; bÞpðyÞ dy

"

+
ð1
u+ c1h

f mðyÞwðu + c1h; y� u� c1hÞpðyÞdy
�
+
oðhÞ
h

¼ 0 ðA:2Þ

Again, sending h ! 0+ and noting that the above equation only involves ϕδ13;ið�; bÞ in the lower
layer, we obtain (2.2) with ϕ0

L;δ13;mðu; bÞ being a right derivative. If we replace u by u − c1h in (A.1),
then similar procedure reveals that ϕδ13;mðu; bÞ is left-continuous in u for 0<u≤b and (2.2) also
holds true with ϕ0

L;δ13;mðu; bÞ being a left derivative.

For u≥ b, it can be easily seen that (A.1) (and hence (A.2)) is also applicable but with c1 replaced
by c2. Therefore, following the same arguments as above, one can conclude that ϕδ13 ;mðu; bÞ is
continuous for u≥b. Further noting that, for u≥bðu

0
f m� iðyÞϕδ13;iðu� y; bÞpðyÞ dy

¼
ðu� b

0
f m� iðyÞϕU;δ13;iðu� y; bÞpðyÞdy +

ðu
u�b

f m� iðyÞϕL;δ13;iðu� y; bÞpðyÞ dy

Joint analysis of payments to policyholders and shareholders

261

https://doi.org/10.1017/S1748499516000075 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499516000075


it is found that (2.3) is valid for both right and left derivatives of ϕU;δ13;mð�; bÞ. Finally, the continuity
condition (2.4) is a direct consequence of the left-continuity of ϕδ13;mðu; bÞ at u = b in the lower layer
and the right-continuity of ϕδ13 ;mðu; bÞ at u = b in the upper layer. □

Proof of Theorem 2: The same method as in the proof of Theorem 1 of considering a small time
interval (0,h] can be adopted. If the process fUbðtÞgt ≥ 0 starts below the threshold level b, then it is
possible that Dδ2 ðτbÞ ¼ 0 (when the process fUbðtÞgt ≥ 0 never reaches b before ruin). We first arrive
at, for 0≤ u<b

ϕδ123;n;mðu; bÞ ¼ ð1� λhÞe�ðδ1 +nδ2 +mδ3Þhϕδ123;n;mðu + c1h; bÞ

+ λhe�ðδ1 + nδ2 +mδ3Þh
ðu + c1h
0

Xm
i¼ 0

m

i

 !
f m� iðyÞϕδ123 ;n;iðu + c1h� y; bÞpðyÞdy + oðhÞ ðA:3Þ

The above equation is almost identical to (A.1) in Theorem 1, except that the termÐ1
u+ c1h

f mðyÞwðu + c1h; y� u� c1hÞpðyÞdy is now absent. Following the arguments therein, one can
see that ϕδ123 ;n;mðu; bÞ is continuous in u for 0≤ u≤b, and (2.5) holds true.

On the other hand, if u≥b, dividends are paid continuously at rate α until the surplus falls below b.
Denoting stjδ ¼ ðeδt � 1Þ=δ as the actuarial symbol for the accumulated value of an annuity with
rate $1 per unit time payable continuously for t time units under a force of interest δ, we have that,
for u≥b

ϕδ123 ;n;mðu; bÞ ¼ ð1� λhÞe�ðδ1 +nδ2 +mδ3Þh
Xn
j¼0

n

j

 !
αshjδ2

� �j
ϕδ123 ;n� j;mðu + c2h; bÞ

+ λhe�ðδ1 +nδ2 +mδ3Þh
ðu + c2h
0

Xn
j¼0

n

j

 !
αshjδ2

� �jXm
i¼0

m

i

 !
f m� iðyÞϕδ123 ;n� j;iðu + c2h� y; bÞpðyÞdy

"

+
ð1
u + c2h

αshjδ2

� �n
f mðyÞwðu + c2h; y� u� c2hÞpðyÞdy

�
+ oðhÞ ðA:4Þ

Noting limh!0 + shjδ2 ¼ 0 and the convention 00 = 1, we separate the contribution j = 0 in the first
summation term above and let h ! 0 + to establish the right-continuity of ϕδ123 ;n;mðu; bÞ for u≥b.
As e�ðδ1 +nδ2 +mδ3Þh ¼ 1�ðδ1 + nδ2 +mδ3Þh + oðhÞ, rearranging (A.4) and then dividing by h yields,
for u≥b

ϕδ123 ;n;mðu + c2h; bÞ�ϕδ123;n;mðu; bÞ
h

+
Xn
j¼1

n

j

 !
αshjδ2

� �j
h

ϕδ123 ;n� j;mðu + c2h; bÞ

� ðλ + δ1 + nδ2 +mδ3Þ
Xn
j¼0

n

j

 !
αshjδ2

� �j
ϕδ123 ;n� j;mðu + c2h; bÞ

+ λe�ðδ1 +nδ2 +mδ3Þh
ðu+ c2h
0

Xn
j¼0

n

j

 !"
αshjδ2

� �jXm
i¼ 0

m

i

 !
f m� iðyÞϕδ123 ;n� j;iðu + c2h� y; bÞpðyÞdy

+
ð1
u + c2h

αshjδ2

� �n
f mðyÞwðu + c2h; y� u� c2hÞpðyÞ dy

�
+
oðhÞ
h

¼ 0
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Because limh!0 + shjδ2=h ¼ 1 and limh!0 + ðshjδ2Þ
j=h ¼ 0 for j> 1, taking the limit h ! 0 + in the above

equation leads to the IDE (2.6), with ϕ0
U;δ123 ;n;mðu; bÞ understood to be a right derivative. Next, for

u> b, by assuming an initial surplus level of u − c2h instead in (A.4), we obtain the left-continuity of
ϕU;δ123;n;mðu; bÞ and that (2.6) is valid with ϕ0

U;δ123 ;n;mðu; bÞ being a left derivative as well. Lastly, the
continuity condition (2.7) follows in the same manner as in the proof of Theorem 1. □

Proof of Theorem 3: As the definition (1.6) contains the indicator 1fτb¼1g, sample paths for which a
claim amount exceeds the surplus level just before its occurrence contribute nothing to φδ23;n;mðu; bÞ.
Again, by conditioning on the possible claim events within (0,h] for some small h, we have,
for 0≤ u< b

φδ23;n;mðu; bÞ ¼ð1� λhÞe�ðnδ2 +mδ3Þhφδ23;n;mðu + c1h; bÞ

+ λhe�ðnδ2 +mδ3Þh
ðu + c1h
0

Xm
i¼ 0

m

i

 !
f m� iðyÞφδ23;n;iðu + c1h� y; bÞpðyÞdy + oðhÞ ðA:5Þ

and, for u≥ b

φδ23 ;n;mðu; bÞ ¼ð1� λhÞe�ðnδ2 +mδ3Þh
Xn
j¼0

n

j

 !
αshjδ2

� �j
φδ23;n� j;mðu+ c2h; bÞ

+ λhe�ðnδ2 +mδ3Þh
ðu + c2h
0

Xn
j¼0

n

j

 !
αshjδ2

� �jXm
i¼0

m

i

 !
f m� iðyÞ

´φδ23;n� j;iðu+ c2h� y; bÞpðyÞdy +oðhÞ ðA:6Þ

While (A.5) is structurally identical to (A.3), (A.6) is like (A.4) except that the term with the penalty
function is absent. Hence, the IDEs (2.8) and (2.9) together with the continuity condition (2.10)
follow in the same manner as how Theorem 2 (and also Theorem 1) is proved. □

Proof of Lemma 2: For presentation purposes, in this proof we shall specify the dependence of the
time of ruin on the initial surplus u by writing τu;b instead of τb. Moreover, we let Dδ2ðu; b; tÞ ¼
α
Ð t
0 e

�δ2s1fUbðsÞ ≥ bgds be the total discounted dividends paid until time t. Then, it is clear that
Dδ2 ðu; b; tÞ is increasing (i.e., non-decreasing) in both u and t, and the dividend variable defined via
(1.2) shall be written as Dδ2ðτbÞ ¼ Dδ2ðu; b; τu;bÞ. In contrast, with Zδ3ðtÞ ¼

PNðtÞ
k¼1 e�δ3Tk f ðYkÞ being

the aggregate discounted claim costs until time t, it is noted that Zδ3 ðτu;bÞ ¼
PNðτu;bÞ

k¼1 e�δ3Tk f ðYkÞ
depends on u only via the ruin time τu;b. In this proof, the initial condition Ub(0) = u will be omitted
in related expectations and probabilities.

Note that the ruin probability ψðu; bÞ ¼ Prfτu;b <1g is bounded by ψðu; 0Þ for which the net premium
income is always c2. Under the loading condition c2> λE[Y1], it is known from e.g. Kyprianou (2013,
theorem 4.3 and equation (9.16)) that limu!1 ψðu; 0Þ ¼ 0. Therefore, one has that limu!1 ψðu; bÞ ¼ 0,
or equivalently limu!1 Prfτu;b ¼ 1g ¼ 1. Meanwhile, for every realisation of the aggregate claims
process fSðtÞgt ≥ 0, it is clear that τu;b is increasing in u and the sequence of sets ffτu;b ¼ 1gg1u¼1 is
increasing as well. This leads to limu!1 Prfτu;b ¼ 1g ¼ Prflimu!1fτu;b ¼ 1gg. Combining the above
two results, we arrive at Prflimu!1fτu;b ¼ 1gg ¼ 1, i.e. the event limu!1fτu;b ¼ 1g occurs a.s..
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In other words, 1limu!1fτu;b ¼1g ¼ 1 a.s.. Again, due to the fact that the set fτu;b ¼ 1g is increasing in u,
we have 1limu!1fτu;b¼1g ¼ limu!1 1fτu;b¼1g, and the intermediate result

lim
u!1

1fτu;b ¼1g ¼ 1 a:s: (A.7)

follows. Next, we look at the limit of (1.6), namely

lim
u!1

φδ23;n;mðu; bÞ ¼ lim
u!1

E½Dn
δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞ1fτu;b ¼1g�

where n;m 2 N. For any sample path of fSðtÞgt ≥ 0, it is observed that the random variables
Dδ2ðu; b; τu;bÞ; Zδ3 ðτu;bÞ and 1fτu;b ¼1g are all non-negative and increasing in u. Applying the
Monotone Convergence Theorem to change the order of limit and expectation leads to

lim
u!1

φδ23;n;mðu; bÞ ¼ E lim
u!1

ðDn
δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞ1fτu;b ¼1gÞ

h i
(A.8)

Because Dn
δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞ ¼ Dn

δ2
ðu; b;1ÞZm

δ3
ð1Þ on the set fτu;b ¼ 1g, the above equation can

be rewritten as

lim
u!1

φδ23;n;mðu; bÞ ¼ E lim
u!1

ðDn
δ2
ðu; b;1ÞZm

δ3
ð1Þ1fτu;b¼1gÞ

h i
Since N(t)→∞ a.s. as t→∞, we note that Zδ3ð1Þ ¼

P1
k¼1 e�δ3Tk f ðYkÞ a.s. which does not depend

on u, and therefore

lim
u!1

φδ23;n;mðu; bÞ ¼ E Zm
δ3
ð1Þ lim

u!1
ðDn

δ2
ðu; b;1Þ1fτu;b ¼1gÞ

h i

¼ E Zm
δ3
ð1Þ lim

u!1
Dn

δ2
ðu; b;1Þ

� �
lim
u!1

1fτu;b ¼1g

� �h i

¼ E Zm
δ3
ð1Þ lim

u!1
Dn

δ2
ðu; b;1Þ

h i
In the second equality above, we have used the fact that the limit of product is the product of limits as
long as the individual limits exist. While the limit of 1fτu;b ¼1g is given by (A.7), the limit
limu!1Dδ2ðu; b;1Þ exists because Dδ2ðu; b;1Þ is increasing in u and bounded by α/δ2.

Next, for any realisation of fSðtÞgt ≥ 0, the event fUbðsÞ ≥ b for all s ≥ 0g (for fUbðtÞgt ≥ 0 starting
with initial surplus u≥ b) is equivalent to the event fτu� b;0 ¼ 1g (for fU0ðtÞgt ≥ 0 starting with
u −b). Since limu!1ψðu� b; 0Þ ¼ 0, using the same arguments leading to (A.7) yields
limu!11fτu� b;0 ¼1g ¼ 1 a.s. and hence limu!11fUbðsÞ ≥ b for all s ≥ 0g ¼ 1 a.s.. By consolidating these
observations, it is found that

lim
u!1

φδ23;n;mðu; bÞ ¼ E Zm
δ3
ð1Þ lim

u!1
ðDn

δ2
ðu; b;1Þ1fUbðsÞ ≥ b for all s ≥ 0gÞ

h i

¼ E Zm
δ3
ð1Þ lim

u!1

α

δ2

� �n

1fUbðsÞ ≥ b for all s ≥ 0g

� �� �

¼ α

δ2

� �n

E
X1
k¼1

e�δ3Tk f ðYkÞ
 !m" #

Note that we have also used the fact that Dδ2ðu; b;1Þ ¼ α
Ð1
0 e�δ2s1fUbðsÞ ≥ bgds ¼ α=δ2 on the set

fUbðsÞ ≥ b for all s ≥ 0g as well as Zδ3ð1Þ ¼
P1

k¼1 e�δ3Tk f ðYkÞ a.s. in the last two equalities. From
the definition (2.11), the result (2.12) follows, from which it is clear that the right-hand side is finite if
θδ3;m is finite (and from Remark 6 a sufficient condition for this is that the mth moment of f(Y1) is
finite). □
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Proof of Lemma 3: Suppose that w(·, ·) is bounded by a constant W. Using the notations in the proof
of Lemma 2, we have that, for n;m 2 N

lim
u!1

ϕδ123 ;n;mðu; bÞ ¼ lim
u!1

E½e�δ1τu;bDn
δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞwðUbðτ�u;bÞ;jUbðτu;bÞjÞ1fτu;b <1g�

≤W lim
u!1

E½Dn
δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞ1fτu;b <1g�

¼ W lim
u!1

ðE½Dn
δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞ� �E½Dn

δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞ1fτu;b ¼1g�Þ ðA:9Þ

¼ W lim
u!1

E½Dn
δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞ� � lim

u!1
φδ23;n;mðu; bÞ

� �
(A.10)

One can apply Monotone Convergence Theorem to the first limit to yield

lim
u!1

E½Dn
δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞ� ¼ E lim

u!1
ðDn

δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞÞ

h i
¼ lim

u!1
φδ23;n;mðu; bÞ

where the last equality follows from (A.7) and (A.8). For a given m 2 N, the limit limu!1φδ23;n;mðu; bÞ
on the right-hand side is finite according to Lemma 2 since we assume that θδ3;m is finite. As both limits
appearing in (A.10) are equal, one has that limu!1ϕδ123;n;mðu; bÞ≤0, which along with the non-
negativity of ϕδ123;n;mðu; bÞ results in (2.13). (Note that we require both E½Dn

δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞ� and

E½Dn
δ2
ðu; b; τu;bÞZm

δ3
ðτu;bÞ1fτu;b ¼1g� to be finite in obtaining the equality (A.9). But this must be true as

both expectations are increasing in u and converge to a finite limit.) □

Proof of Theorem 4: When m = 0, the IDE (2.5) becomes, for 0<u<b

c1ϕ0
L;δ12;nðu; bÞ� ðλ + δ1 + nδ2ÞϕL;δ12;nðu; bÞ + λ

ðu
0
ϕL;δ12;nðu� y; bÞpðyÞ dy ¼ 0

which is structurally identical to e.g. Gerber et al. (2006, equation (2.12)). Therefore, the solution
form (3.13) along with (3.16) is a direct consequence of their equations (7.3) and (7.8).

Next, (3.14), (3.15), and (3.17) can be proved by induction on n 2 N+ . To begin, we look at the case
n = 1. From (2.6), we have that, for u> b

c2ϕ0
U;δ12;1ðu; bÞ� ðλ + δ1 + δ2ÞϕU;δ12;1ðu; bÞ + αϕU;δ1ðu; bÞ + λ

ðu�b

0
ϕU;δ12;1ðu� y; bÞpðyÞ dy

+ λ
ðu
u� b

ϕL;δ12 ;1ðu� y; bÞpðyÞdy ¼ 0 ðA:11Þ

Using the density (3.1) and (3.13) with n = 1 leads the last integral in (A.11) to

λ

ðu
u� b

ϕL;δ12;1ðu� y; bÞpðyÞ dy ¼ λ
Xr + 1
j¼1

Xr
k¼1

A1;0;0;jqkμk
μk + ρ1;0;j

eðμk + ρ1;0;jÞb � 1
� �

e�μku (A.12)

Because ðd=du + μkÞ
Ð u�b
0 ϕU;δ12;1ðu� y; bÞe�μky dy ¼ ϕU;δ12 ;1ðu; bÞ, insertion of (3.1), (A.12), and

ϕU;δ1ðu; bÞ given in Lemma 4 into (A.11) followed by application of the operator
Qr

k¼1 ðd=du + μkÞ
results in an (r +1)th order differential equation with constant coefficients satisfied by ϕU;δ12;1ð�; bÞ.
Note that the non-homogeneous part of this differential equation involves the exponential
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terms feκ0;0;jugrj¼1. Let fκ1;0;jg
r + 1
j¼1 be the roots of the characteristic equation of the homogeneous part.

Later we will see that fκ1;0;jgr +1j¼1 are really Lundberg’s roots defined via (3.2). Then, we arrive at the
solution form

ϕU;δ12;1ðu; bÞ ¼
Xr
j¼1

A�
1;0;0;0;je

κ0;0;ju +
Xr + 1
j¼1

A�
1;0;1;0;je

κ1;0;ju; u>b (A.13)

where A�
1;0;i;0;j’s are constants to be determined. Utilising (3.1), (3.8), and (A.13), we evaluate the first

four terms in (A.11) as

c2ϕ0
U;δ12 ;1ðu;bÞ� ðλ + δ1 + δ2ÞϕU;δ12;1ðu; bÞ + αϕU;δ1ðu;bÞ + λ

ðu� b

0
ϕU;δ12 ;1ðu� y;bÞpðyÞdy

¼ c2
Xr
j¼1

A�
1;0;0;0;jκ0;0;je

κ0;0;ju +
Xr +1
j¼1

A�
1;0;1;0;jκ1;0;je

κ1;0;ju

 !

�ðλ + δ1 + δ2Þ
Xr
j¼1

A�
1;0;0;0;je

κ0;0;ju +
Xr +1
j¼1

A�
1;0;1;0;je

κ1;0;ju

 !
+ α
Xr
j¼1

A�
0;0;0;0;je

κ0;0;ju

+ λ
Xr
j¼1

Xr
k¼1

A�
1;0;0;0;jqkμk
μk + κ0;0;j

ðeκ0;0;ju � eðμk + κ0;0;jÞbe�μkuÞ + λ
Xr +1
j¼1

Xr
k¼1

A�
1;0;1;0;jqkμk
μk + κ1;0;j

ðeκ1;0;ju � eðμk + κ1;0;jÞbe�μkuÞ ðA:14Þ

As the sum of (A.12) and (A.14) is 0 for all u> b due to (A.11), relationships among the unknown
constants in (A.13) can be obtained by equating various exponential terms with 0. First, examining
the coefficients of eκ1;0;ju asserts that fκ1;0;jgr +1j¼1 are the roots of (3.2) when l = 2, n = 1, and m = 0.
Since κ1;0;r +1>0, application of the limiting condition (2.13) to (A.13) reveals that A�

1;0;1;0;r +1 ¼ 0
(see Remark 9), and therefore we have proved (3.14) when n = 1. Next, from the coefficients
of eκ0;0;ju, we get

c2A�
1;0;0;0;jκ0;0;j �ðλ + δ1 + δ2ÞA�

1;0;0;0;j + αA
�
0;0;0;0;j + λ

Xr
k¼1

A�
1;0;0;0;jqkμk
μk + κ0;0;j

¼ 0; j ¼ 1; 2; ¼ ; r

which leads to (3.15) when n = 1 because each κ0;0;j satisfies (3.2) when l = 2 and n = m = 0. Lastly,
the coefficients of e�μκu along with the use of A�

1;0;1;0;r +1 ¼ 0 imply

�λ
X1
i¼ 0

Xr
j¼1

A�
1;0;i;0;jqkμk
μk + κi;0;j

eðμk + κi;0;jÞb + λ
Xr +1
j¼1

A1;0;0;jqkμk
μk + ρ1;0;j

ðeðμk + ρ1;0;jÞb � 1Þ ¼ 0; k ¼ 1; 2; ¼ ; r

One can use (3.16) when n = 1 to simplify the above equation and observe that (3.17) holds true
when n = 1. Having shown that (3.14), (3.15), and (3.17) are true for n = 1, mathematical induction
can be applied to prove that they are also valid for all n 2 N+ . Since the induction step is almost
identical to the above proof, the details are omitted here. Finally, (3.18) is a result of the continuity
condition (2.7) and the solutions (3.13) and (3.14). □

Proof of Theorem 5: It is instructive to note that the analysis of the IDE for the lower layer is
identical to that in Theorem 4. Therefore, it is clear that (3.19) and (3.22) hold true. Moreover, once
the solution (3.20) in the upper layer is proved (in what follows), (3.24) simply comes from the
continuity condition (2.10).
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Like the proof of Theorem 4, we shall focus on proving (3.20), (3.21), and (3.23) for n = 1, as the
induction step is essentially the same as this first step. When n = 1 and m = 0, (2.9) becomes,
for u> b

c2φ0
U;δ2;1ðu; bÞ� ðλ + δ2ÞφU;δ2 ;1ðu; bÞ + αφUðu; bÞ + λ

ðu�b

0
φU;δ2 ;1ðu� y; bÞpðyÞdy

+ λ
ðu
u� b

φL;δ2;1ðu� y; bÞpðyÞdy ¼ 0 ðA:15Þ

Although the above IDE looks identical to (A.11), it contains the starting point φUðu; bÞ (given in
(3.12)) which involves an additional constant term compared to the starting point ϕU;δ1 ðu; bÞ (given
in (3.8)) of (A.11). See Remark 5. Similar to the derivations of Theorem 4, application of the
operator

Qr
k¼1 ðd=du + μkÞ leads (A.15) to an (r+1)th order differential equation with constant

coefficients as well as some non-homogeneous terms involving a constant and the exponential terms
feκ

�
0;0;jugrj¼1. We shall see that the roots of the characteristic equation of the homogeneous part are the

Lundberg’s roots fκ�1;0;jg
r + 1
j¼1 , and hence the general solution of φU;δ2 ;1ðu; bÞ is

φU;δ2;1ðu; bÞ ¼
Xr
j¼1

C�
1;0;0;0;je

κ�0;0;ju +
Xr +1
j¼1

C�
1;0;1;0;je

κ�1;0;ju +E1;0; u> b (A.16)

for some constants C�
1;0;0;0;j’s, C

�
1;0;1;0;j’s, and E1,0. Substitution of (3.1), (3.12), (3.19) with n = 1,

and (A.16) into the left-hand side of (A.15) followed by straightforward calculations yields

0 ¼ c2
Xr
j¼1

C�
1;0;0;0;jκ

�
0;0;je

κ�0;0;ju +
Xr +1
j¼1

C�
1;0;1;0;jκ

�
1;0;je

κ�1;0;ju

 !

�ðλ + δ2Þ
Xr
j¼1

C�
1;0;0;0;je

κ�0;0;ju +
Xr +1
j¼1

C�
1;0;1;0;je

κ�1;0;ju +E1;0

 !
+ α

Xr
j¼1

C�
0;0;0;0;je

κ�0;0;ju + 1

 !

+ λ
Xr
j¼1

Xr
k¼1

C�
1;0;0;0;jqkμk
μk + κ�0;0;j

eκ
�
0;0;ju � eðμk + κ

�
0;0;jÞbe�μku

� �

+ λ
Xr + 1
j¼1

Xr
k¼1

C�
1;0;1;0;jqkμk
μk + κ�1;0;j

eκ
�
1;0;ju � eðμk + κ

�
1;0;jÞbe�μku

� �
+ λE1;0

Xr
k¼1

qkð1� eμkbe�μkuÞ

+ λ
Xr + 1
j¼1

Xr
k¼1

C1;0;0;jqkμk
ρ�1;0;j + μk

eðμk + ρ
�
1;0;jÞb � 1

� �
e�μku ðA:17Þ

First, one confirms that fκ�1;0;jg
r + 1
j¼1 are the roots of (3.2) when l = 2, n = 1, and m = δ1 = 0 by

equating the coefficients of eκ
�
1;0;ju with 0. Noting that κ�1;0;r +1 > 0, the boundedness of φU;δ2;1ðu; bÞ

as u→∞ according to Lemma 2 means that C�
1;0;1;0;r +1 ¼ 0. Second, the constant term implies

E1,0 = α/δ2, which must be the case because of E1;0 ¼ limu!1 φδ23;1;0ðuÞ and Lemma 2. Thus, the
solution form (A.16) reduces to (3.20) when n = 1. Finally, using the coefficients of eκ

�
0;0;ju and e�μku,

respectively, proves that (3.21) and (3.23) are true for n = 1 in the same manner as (3.15) and
(3.17) when n = 1 are shown. The induction step of the proof of (3.20), (3.21), and (3.23) is
omitted. □

Proof of Theorem 6: We begin by recalling from Remark 4 that ϕδ13;1ðu; bÞ ¼ ϕL;δ13;1ðu; bÞ in the
lower layer satisfies the same IDE as the counterpart under a dividend barrier strategy. As a result,
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some results in Cheung et al. (2015, theorem 6) are applicable. In particular, (3.25), (3.27), and
(3.29) directly follow from equations (29)–(31) therein. Therefore, it is sufficient to look at the IDE in
the upper layer. From (2.3), it is given by, for u>b

c2ϕ0
U;δ13;1ðu;bÞ�ðλ+δ1+δ3ÞϕU;δ13;1ðu;bÞ+λ

ðu�b

0
ϕU;δ13;1ðu�y;bÞpðyÞdy+λ

ðu
u�b

ϕL;δ13;1ðu�y;bÞpðyÞdy

+λ
ðu�b

0
yϕU;δ1 ðu�y;bÞpðyÞdy+λ

ðu
u�b

yϕL;δ1 ðu�y;bÞpðyÞdy+λ
ð1
u
ywðy�uÞpðyÞdy¼ 0 ðA:18Þ

Using (3.1), (3.7), (3.8), and (3.25), the last four integrals in (A.18) are evaluated as

λ

ðu
u� b

ϕL;δ13;1ðu� y; bÞpðyÞdy ¼ λ
X1
i¼0

Xr +1
j¼1

Xr
k¼1

A0;1;i;jqkμk
μk + ρ0;i;j

ðeðμk + ρ0;i;jÞb � 1Þe�μku (A.19)

λ

ðu� b

0
yϕU;δ1ðu� y; bÞpðyÞdy ¼ λ

Xr
j¼1

Xr
k¼1

A�
0;0;0;0;jqkμk

1

ðμk + κ0;0;jÞ2
eκ0;0;ju � 1

μk + κ0;0;j
eðμk + κ0;0;jÞbue�μku

"

+
b

μk + κ0;0;j
� 1

ðμk + κ0;0;jÞ2

 !
eðμk + κ0;0;jÞbe�μku

#
ðA:20Þ

λ

ðu
u� b

yϕL;δ1ðu� y; bÞpðyÞdy ¼ λ
Xr + 1
j¼1

Xr
k¼1

A0;0;0;jqkμk
1

μk + ρ0;0;j
ðeðμk + ρ0;0;jÞb � 1Þue�μku

(

+ � b
μk + ρ0;0;j

eðμk + ρ0;0;jÞb +
1

ðμk + ρ0;0;jÞ2
ðeðμk + ρ0;0;jÞb � 1Þ

" #
e�μku

)
ðA:21Þ

and

λ

ð1
u
ywðy� uÞpðyÞ dy ¼ λ

Xr
k¼1

qkμk ~wðμkÞue�μku + λ
Xr
k¼1

qkμkT 2
μk
wð0Þe�μku (A.22)

Applying the operator
Qr

k¼1 ðd=du + μkÞ to (A.18) yields an (r+ 1)th order differential equation with
constant coefficients, and the non-homogeneous terms involve the exponential terms feκ0;0;jugrj¼1 and
fe�μkugrk¼1 . As the Lundberg’s roots fκ0;1;jg

r +1
j¼1 will be shown to satisfy the characteristic equation of

the homogeneous part, we arrive at the solution form

ϕU;δ13;1ðu; bÞ ¼
Xr
j¼1

A�
0;1;0;0;je

κ0;0;ju +
Xr +1
j¼1

A�
0;1;0;1;je

κ0;1;ju +
Xr
k¼1

B�
0;1;0;ke

�μku; u> b (A.23)

for some constants A�
0;1;0;i;j’s and B�

0;1;0;k’s. With (3.1) and (A.23), the first three terms in (A.18) are
found to be

c2ϕ0
U;δ13;1ðu; bÞ� ðλ + δ1 + δ3ÞϕU;δ13 ;1ðu; bÞ + λ

ðu� b

0
ϕU;δ13;1ðu� y; bÞpðyÞdy
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¼ c2
Xr
j¼1

A�
0;1;0;0;jκ0;0;je

κ0;0;ju +
Xr + 1
j¼1

A�
0;1;0;1;jκ0;1;je

κ0;1;ju �
Xr
k¼1

B�
0;1;0;kμke

�μku

 !

�ðλ + δ1 + δ3Þ
Xr
j¼1

A�
0;1;0;0;je

κ0;0;ju +
Xr + 1
j¼1

A�
0;1;0;1;je

κ0;1;ju +
Xr
k¼1

B�
0;1;0;ke

�μku

 !

+ λ
Xr
j¼1

Xr
k¼1

A�
0;1;0;0;jqkμk
μk + κ0;0;j

eκ0;0;ju � eðμk + κ0;0;jÞbe�μku
� �

+ λ
Xr + 1
j¼1

Xr
k¼1

A�
0;1;0;1;jqkμk
μk + κ0;1;j

ðeκ0;1;ju � eðμk + κ0;1;jÞbe�μkuÞ

+ λ
Xr
k¼1

Xr
i¼1;i≠k

B�
0;1;0;iqkμk
μk � μi

ðe�μiu � eðμk � μiÞbe�μkuÞ + λ
Xr
k¼1

B�
0;1;0;kqkμkðu� bÞe�μku ðA:24Þ

Owing to (A.18), the sum of (A.19)–(A.22) and (A.24) is identical to 0. From the coefficients of eκ0;1;ju,
we know that fκ0;1;jgr +1j¼1 are the roots of (3.2) when l = 2, n = 0, and m = 1. As κ0;1;r +1 > 0, the
limiting condition (2.13) implies A�

0;1;0;1;r +1 ¼ 0. Next, comparing the coefficients of ue�μku leads to

λB�
0;1;0;kqkμk � λ

Xr
j¼1

A�
0;0;0;0;jqkμk
μk + κ0;0;j

eðμk + κ0;0;jÞb + λ
Xr +1
j¼1

A0;0;0;jqkμk
μk + ρ0;0;j

ðeðμk + ρ0;0;jÞb � 1Þ + λqkμk ~wðμkÞ ¼ 0;

k ¼ 1; 2; ¼ ; r

Rearrangements give

B�
0;1;0;k ¼

Xr +1
j¼1

A0;0;0;j

μk + ρ0;0;j
� ~wðμkÞ

 !
+
Xr
j¼1

A�
0;0;0;0;j

μk + κ0;0;j
eκ0;0;jb �

Xr +1
j¼1

A0;0;0;j

μk + ρ0;0;j
eρ0;0;jb

 !
eμkb ¼ 0;

k ¼ 1; 2; ¼ ; r

thanks to (3.9) and (3.10). Hence, (A.23) reduces to (3.26). Utilising the coefficients of eκ0;0;ju, one has

c2A�
0;1;0;0;jκ0;0;j �ðλ + δ1 + δ3ÞA�

0;1;0;0;j + λ
Xr
k¼1

A�
0;1;0;0;jqkμk
μk + κ0;0;j

+ λ
Xr
k¼1

A�
0;0;0;0;jqkμk

ðμk + κ0;0;jÞ2
¼ 0; j ¼ 1; 2; ¼ ; r

which results in (3.28) since each κ0;0;j satisfies the Lundberg’s equation (3.2) when l = 2 and
n = m = 0. Lastly, equating the coefficients of e�μku results in

� λ
X1
i¼ 0

Xr
j¼1

A�
0;1;0;i;jqkμk
μk + κ0;i;j

eðμk + κ0;i;jÞb + λ
X1
i¼ 0

Xr +1
j¼1

A0;1;i;jqkμk
μk + ρ0;i;j

ðeðμk + ρ0;i;jÞb � 1Þ

+ λ
Xr
j¼1

A�
0;0;0;0;jqkμk

b
μk + κ0;0;j

� 1

ðμk + κ0;0;jÞ2

 !
eðμk + κ0;0;jÞb

+ λ
Xr + 1
j¼1

A0;0;0;jqkμk � b
μk + ρ0;0;j

eðμk + ρ0;0;jÞb +
1

ðμk + ρ0;0;jÞ2
ðeðμk + ρ0;0;jÞb � 1Þ

" #

+ λqkμkT 2
μk
wð0Þ ¼ 0; k ¼ 1; 2; ¼ ; r

With the help of (3.10) and (3.29), simplifications of the above equation yield (3.30). The remaining
formula (3.31) comes from the continuity condition (2.4). □
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